Test Case Prioritization Using Relevant Slices

Dennis Jeffrey Neelam Gupta
Department of Computer Science Department of Computer Science
The University of Arizona The University of Arizona
Tucson, AZ 85721 Tucson, AZ 85721
jeffreyd@cs.arizona.edu ngupta@cs.arizona.edu
Abstract The prior test case prioritization techniques studied in

[2, 14] are primarily based on variations of thatal re-

Software testing and retesting occurs continuously dur- quirement coveragand theadditional requirement cover-
ing the software development lifecycle to detect errors asage of various structural elements in a program. For in-
early as possible. The sizes of test suites grow as softwarestance, total statement coverage prioritization ordess te
evolves. Due to resource constraints, it is important te pri cases in decreasing order of the number of statements they
oritize the execution of test cases so as to increase chanceexercise. Additional statement coverage prioritization o
of early detection of faults. Prior techniques for test case ders test cases in decreasing order of the number of addi-
prioritization are based on the total number of coverage re- tional statements they exercise, that have not yet been cov-
quirements exercised by the test cases. In this paper, weered by the tests earlier in the prioritized sequence. These
present a new approach to prioritize test cases based on theprioritization techniques do not take into consideratios t
coverage requirements present in tledevant sliceof the statements or branches that actually influenced, or could po
outputs of test cases. We present experimental results comtentially influence, the values of the program output. Nei-
paring the effectiveness of our prioritization approactthwi ther do they take into consideration whether a test case tra-
that of existing techniques that only account for total re- verses a modified statement or not while prioritizing thé tes
guirement coverage, in terms of ability to achieve high rate cases.

of fault detection. Our results present interesting insigh It is intuitive to expect that theutput of a test case, that
into the effectiveness of using relevant slices for tesé cas gyacytes a larger number of statements that actually influ-
prioritization. ence the output or have the potential to influence the output,

is more likely to get affected by the modification than tests

) covering fewer such statementédditionally, tests exer-
1 Introduction cising modified statements should have higher priority than
Software testing is an important and expensive stage of soft tests that do not traverse any modifications. In this paper,
ware development. As software changes over time, testwe present a new approach for prioritizing test cases that is
suites are developed and used to test the modified softwardased not only on total statement (branch) coverage, but tha
to make sure that changes do not affect the existing func-also takes into account the number of statements (branches)
tionality in unintended ways, and to test for new function- executed that influence or have potential to influence the
ality. This process is calleggression testingDue to time output produced by the test case. The set of statements that
and resource constraints, it may not be possible to continu-influence, or have potential to influence, the output of a pro-
ally execute all the tests in suites on every testing itemati gram when run on a particular test case, correspond to the
Itis therefore important tprioritize (order) the execution of relevant slicd1, 10, 3] computed on the output of the pro-
test cases in test suites so as to execute those test cdges eagram when executed by the test case. Our approach is based
on during regression testing, whose output is more likely to on the following observationlf a modification in the pro-
change. Such a prioritization is expected to helganly gram has to affect the output of a test case in the regression
detection of faultsluring regression testing. Techniques for test suite, it must affect some computation in the relevant
Test Case Prioritizatioaddress this problem. In this paper, slice of the output for that test caséherefore, our heuris-
we present a new approach for prioritizing the execution of tic for prioritizing test cases assigns higher weight tost te
existing test cases with the goal of early detection of fault case with larger number of statements (branches) in its rele
in the regression testing process. vant slice of the output. We implemented our approach and

performed an experimental study using the programs from We use the notion of levant slicq10, 1, 3] to identify

the Siemens suite [8] to evaluate the effectiveness of ourthe set of statements or branches that either influence, or
approach in early detection of faults during regression tes have potential to influence, the value of the output produced
ing. Our results show improvements over prior approachesby the test case.

based on total statement (branch) coverage and provide inpefinition: Given a program? and its execution trace for

teresting insights into the use of size of relevant slices of ; . caseé, a statement in the execution trace is in the

outputs in determining the relative importance of test 8ase rq|eyant sliceof the output if (1) at least one of the outputs

in revealing a change in the outputduring regression @stin - ,.,4,ced by the execution ofs directly or indirectly data
The remainder of this paper is organized as follows. The g, control dependent upo# or (2) s is either a predicate

background for our work is explained in section 2. Our ap- oy data-dependency of a predicate that may affect at least

proach and its motivation are explained in Section 3. Our gne output produced by the executiontdf the predicate
experimental study, along with results and discussion, aregygjuates to differentoutcome.

given in Section 4. Related work is discussed in Section 5,

and our conclusions are given in Section 6. Essentially, for a statement to be in the relevant slice, it

must have either affected, or have potential to affect, J1, 3
2 Background the output produced by a test case.

The test case prioritization problem can be defined [14] as3 Our Approach

follows. . _ Intuitively, if a test case exercises a modified statement,
Problem statement: Given a test suitd’, the setPT’ and that modified statement is also included in the relevant
consisting of all the permutations of test cases'inand gjice of the output, then most likely the output of the test
a function f from PT to the set of real numbers, find a case will be affected due to the modification. This is be-
T' € PT such that {(T")(T" # T")[f(T") = f(T")]. cause every statement in the relevant either affects the out
The specific focus of this paper and that of [14] is to find put or has potential to affect the output of the test case.
an ordering of test casel’ of a suiteT” with the goal of However, there can be modifications such as if a value is
increasing the likelihood of revealing faults earlier ireth incremented and Subsequenﬂy decremented in the code be-
testing process. A functiofithat quantifies the rate of fault fore the value is used again in which the modification may
detection for a test suite is the weighted “average percent-not affect the output. We illustrate this with the example
age of faults detected” (APFD) valueomputed during the program given in Figure 1 when it is executed with the input
execution of a test suite, as defined in [14] T=(a, b, c) = (1,5,4). The execution trace of the program
The problem of test case prioritization as stated above isfor testT has branckB; evaluating tofalse and branchB;
an optimization problem and has exponential complexity in subsequently evaluating toue, and therefore the program
the worst case. In [2, 14], the presented techniques are actuoutputs the value 1.
ally greedy heuristics in which test cases are ordered based

upon their requirement coverage (such as the total number 1 read(a, b, c);
of statements or branches exercised). In their experirhenta 20 int x=0, y=0, z=0;
studies in [2], the Siemens suite [8] programs were used to 3
evaluate the effectiveness of the above heuristics. Eaeh pr 4 y i=b+ 1
gram in the Siemens suite is associated with a set of faulty Sz :=c+ L
versions (each containing a seeded error) and a pool of test 6 EEgO)
cases. Thus, the effectiveness of the above test case-priori Bu: :

. L . Ba: if z > 4 then
tization heuristics in early execution of test cases tHataf 7 Wiz w+ 1
the output was measured by computing the rate at which the endi f
seeded faults (program modifications) were exposed by the endi f
test cases in the prioritized sequence. This rate was quan- Bs: if y > 5 then
titatively measured by computing the APFD values for the 8: wisw+ 1

endi f

prioritized test suites.
9: wite(w);

1In order to compute the APFD measure for the execution of@-pri

itized test suite, we plot the percentage of faults dete(yeakis) versus Figure 1. An example program. Given inpua(b, c) =

the fraction of test suite executed (x-axis). The area utitercurve in- (1,5,4), the shaded lines indicate the relevant slice for ou
terpolating the points in this plot is the APFD measure. Mamea under put variablew at line 9; the darker-shaded lines distinguish
the curve (a higher APFD value) indicates that more faulteevdetected those statements contained in the relevant slice thaiaire

when a smaller fraction of the prioritized suite was exedytaore faults

were detected earlier on during execution of tests in the)sui also contained in the dynamic slice.

Notice in the figure that the shaded lines (both the
lightly-shaded and darker shaded lines) indicate the aglev
slice of output variablev at line 9. The darker-shaded lines
indicate those statements that are in the relevant slide, bu
not also in the dynamic slice, of variable at line 9. The
reason branctB; is not contained in thelynamicslice is
because the value af at line 9 is neither directly nor indi-
rectly data or control-dependent éf for testT. However,

B is contained in theelevantslice because although it did
not affect the value of the outputin this case, it coubden-
tially affect the outpuif the branch outcome had evaluated
to true instead off alse (because thérue block of branch
B, contains a potential definition of variabl®. Similarly,
sinceB; is data-dependent upon the definitionedh line 3
(but no other statements are data-dependent umafined

in line 3), the line 3 is also contained in the relevant slige b
not in the dynamic slice (ie., line 3 did not actually affect,
but has potential to affect, the value of variablat line 9).

Now suppose that the statement at line 3 gets modified
by mistake so that it changes fram =a+1 into x: =b+1.
Since line 3 is exercised and is also included in the relevant
slice of output variablev at line 9, we intuitively expect
that the error will be exposed by test cakendeed, with
this modification it turns out that all three branches are ex-
ercised and evaluate toue. As a result, the value 2 is
outputted (instead of the original value 1) and the erroseou
modification is exposed. This example highlights the fact

Let us next consider the case in which a modified state-
ment isnot contained in the relevant slice. From Figure 1,
notice that line 5 is not contained in the relevant slice.sThi
is because brancB; is the only statement in the program
that is data-dependent upon the definitiorr @f line 5, but
branchBs is not even exercised by our tebf(thus, line 5
is not included in the relevant slice). Suppose that line 5
is changed fronz: =c+1 into z: =b+1. With this modifi-
cation, the execution trace follows the original path/f
evaluating tof alse and B3 evaluating tarue, and the out-
put is not affected (since the modification affected the @alu
of the definition which is not used in the relevant slice). A
test case exercising a modified statement, that is not con-
tained in the relevant slice, will likely change the program
outputonly when the variable being defined by the modi-
fied statement is changed to another variable which is used
in the relevant slicée.g., by modifying the variable in the
left-hand side of an assignment). To see this, suppose that
line 5 is changed fronz: =c+1 intoy: =c+1. Then this
actually causes the executed path to change because now
althoughB; still evaluates tofalse, we have thaBs now
subsequently evaluates false too. This causes the out-
putted value ofv to be 0, which is different from the origi-
nal outputted value of 1. However, we believe this case (in
which the left-hand side of an assignment is modified) to
be the only case in which an exercised modification will be
outsidethe relevant slice, yet may still affect the program

that the statement at line 3 certainly does have potential tooutput.

affect the program output.

While we might generally expect that an exercised mod-
ification that is also included in the relevant slice will af-
fect the output of a program, there do exist cases in which
exercising a modification, that is contained in the relevant
slice, will actuallynot change the output value(s) of a pro-

gram and therefore may not lead to a fault being exposed.

Consider the case in Figure 1 in which line 3 is again modi-
fied, but now it changes from: =a+1 intoy: =a+1. With

this modification, the execution actually follows the origi
nal path through the code in whidh, evaluates tofalse

and Bs subsequently evaluates toue, and therefore the
original computed value fap, 1, is outputted. This demon-
strates that it is not always true that exercising a modified
statement, that has potential to influence program output,
will actually cause the output value(s) to change. This im-

The above example motivates the following approach.
While considering whether a test case is likely to change the
output when executed for the modified program, we need to
take into consideration the following factors.

1. The number of statements (branches) in the relevant
slice of output for the test case because any modifica-
tion shouldnecessarilyaffect some computation in the
relevant slice to be able to change the output for this
test case.

. The number of statements that are executed by the test
case but are not in the relevant slice of the output be-
cause changing the variable on lhs of an assignment
not in the relevant slice may affect a computation in
the relevant slice and thus may change the output.

Based on the above factors, we propose the following

plies that there is no guarantee that a test case exercisingeuristic for test case prioritization. We order the tesesa
more modified statements that are contained in the relevanin decreasing order of test case weight, where the weight

slice, will necessarily expose more faults (or change thie ou

for a test is determined as followsest case weight = #

put) than another test case exercising fewer modificationsof req’s present in the relevant slice + total # of req’s ex-

that are in the relevant slice. Nevertheless, in practice we
might expect a higher likelihood that exercising a modifica-

ercised by the test caseTies are broken arbitrarily. This
criterion essentially gives “single” weight to those exer-

tion that has potential to affect program output, will actu- cised requirements that are outside the relevant slice, and
ally cause program output to change and therefore expose ddouble” weight to those exercised requirements that are
fault. contained in the relevant slice. We call this approach the

“REG+OI+POI” approach for prioritization, where REG, each test case, we used this information to prioritize thie te
denotes REGular statement (branches) executed by the testases and afterwards computed the APFD value for each
case, Ol denotes the Output Influencing and POI denotes therioritized suite in order to evaluate the suite’s rate eoitfa
Potentially Output Influencing statements (branches) exe-detectiod. We examined the types of errors introduced in
cuted by the test case. In the next section, we presenthe faulty versions of each subject program and identified
some experiments evaluating the effectiveness of the abovesix distinct categories of seeded errors: (1) changing the
heuristic for test case prioritization. operator in an expression, (2) changing an operand in an ex-
; pression, (3) changing the value of a constant, (4) removing
4 Experimental Study code, (5) adding code, and (6) changing the logical behavior
4.1 Experimental Study of the code (usually involving a few of the other categories
We used the Siemens programs described in Table 1 as ouf error types simultaneously in one faulty version). Thus,
subject programs. Each program is associated with a sethe faulty versions used in our experiments cover a wide
of faulty versions (each containing a seeded error) and avariety of fault types.
pool of test cases. The subject programs and their associ- We conducted experiments with the REG+OI+POI

ated faulty versions and test pools were obtained from [7]. heuristic proposed in section 3. For comparison, we also
prioritized the tests using the approach in [2, 14] that only

Program [Lines [#of Faulty [TestCase Program accounts for total requirement coverage, and we ordered the
Name of Code Versions Pool Size Description in d . d fth b f ised
tcas 138 a1 1608 | aliude separafion test cases in decreasing order of the number of exercise
tOtfiwnfg 346 23 1052 info accurt?ulljatlor statements/branches covered by each test case (ties are bro
sche 299 8 2650 priority scheduler f . f « ”

sched2 | 297 10 2710 | priority scheduler ken arbitrarily). We call this the “REG” approach.

ptok 402 7 4130 lexical analyzer 4.2 Resultsand Discussion

ptok2 483 10 4115 lexical analyzer)) .) .

replace 516 32 5542 | pattern substituter The plots in Figures 2 and 3 illustrate the benefit of the

REG+OI+POI approach over the REG approach in terms
of promoting improved APFD values for prioritized suites.

The goal of our experiments is to see how well our pri- Specifically, for each plot, we consider every test suiteafor

oritized suites for the heuristic proposed in section 3 per- 9IVen subject programin which the REG+OI+POl approach
form in terms of rate of fault detection, with respect to aNdthe REG approach resultediifferentcomputed APFD

the faulty versions provided with the Siemens programs. Values. Then, for each such suite we computediffer-
Our experimental approach is to generate test suites; prior €"cePetween the REG+OI+POI APFD value, and the REG

itize them, and then measure the resulting APFD value for APFD value, to obtain a measure of the improvement of the
each prioritized suite. Similar to the experimental setup i REG*OI+POl approach in terms of APFD value (negative

[2, 14], we generated 1000 branch-coverage adequate tefifferences occur when REG+OI+POI performs worse than
suites from the provided test pools for each program. For REG). Finally, we order these suites in decreasing order of

each test case, we measured the total set of exercised stat&?® @mount of benefit of the REG+OI+POI approach, and

ments and branches using instrumented versions of the sub1€n plot the data _ _
ject programs as generated by the Aristotle program anal- _1aPlé 2 is meant to accompany Figures 2 and 3. In this
ysis tool [6]. For each test case we also computed the sef@Ple, we present values computed for the area under the
of statements and branches in the relevant slice based offU"ve of €ach plot, including the areas both above and be-

the program output generated when executing the test cast®W the liney = 0. These areas respectively represent a
on the given subject program. To compute a relevant slice, "€asure of the improvement and the worsening witnessed

we first computed the statements in the dynamic slice of the 270 measure fault detection, similar to as done in [2, 14], veasared
program output by computing the transitive closure of data the set of faults exposed by each test case by executing argase on
and control dependences of the output exercised by the tesi]aCh faulty version of the corresponding subject program, @mpared

. . . the output of these faulty versions to the output generateshwthe test was
case. Then, we aUQmented the dynamlc slice with the ad'run on the base version (the “oracle”) of the program. If taeebversion

ditional statements/branches that were potentially-@Htp output differed from some faulty version output when botrsigns were
influencing (this would normally involve static analysisitb run30n a particular test case, this indicaFed that a faultewpgsed. _
we tried to approximate this by looking at the execution !N agraph, each unitalong the x-axis represents a suitahangaxis

f all the tests in the large test pools provided wieh t represents the percentage difference in APFD values foita lsetween
traces ora - € g) p : p the REG+0I+POI and the REG approaches. Each graph alsaéxthe
Siemens suite programs to see if changing the branch outiine y = 0, because the point at which the curve crosses this axis as one
come would affect the program output or not) and their cor- moves in the positive x direction, is the point at which ssiiteansition

responding data dependencies to obtain the relevant slices o being better to being worse using the REG+OI+POI pifitiion
approach. Also, each graph includes a vertical line at ttdpaint along

Given the Set§ of regular exercjsed Statemer‘ts andihe horizontal axis to show the median suite in the orderegiaece of
branches along with the corresponding relevant slices forsuites along the x-axis.

Table 1. Siemens suite of programs.

(REG)

(REG+OI+POI) -

REG)

(

(REG+OI+POI) -

APFD difference:

APFD difference:

The Benefit of REG+OI+POI Over REG: Statement Coverage
tcas _ totinfo _ sched _ sched2
T T T Q T T T 9 T T 1 T T T

g 2 g 3
& & & wp
15 "
_ ~ —
= = =
5wl 5 5
2 g 2
& ¥ 10 &
4 it Lol
5 s 3 3
& & &
ﬂ g, g, | g o i
= K\\\\\Y - .
8 8 S ol
H & -10 2
5 5 5
Lol i@ g
5 3]
b N g oo
o -15 o 20 o
B e 3
a o o st
g & 3
0 50 100 150 200 250 300 350 400 450 < 0 50 100 150 200 250 300 350 < o 50 100 150 200 250 300 350 A o 20 40 60 80 100 120 140 160
Test Suite Test Suite Test Suite Test Suite
R R ptok2 _ replace
5 5 1w . 5 ! §
3 3 3
& & Z o6
|)
a 3 o
1S) o 5 o
2 4 2
g G E:
o o o 2
2 Q Q
g g o L\ go e
§ g § ol R\\\\“\
° H 2
g g $
g . g
5 5 5.l |
& & &
i & &
o B 5
o T]
o 8t a a 6F
g 2 2
£ U SR [T] &
< [20 40 60 80 100 120 140 160 180 o 0 50 100 150 200 250 300 B 0 100 200 300 400 500

Test Suite

Test Suite

Test Suite

Figure 2. The difference between the APFD values of suites priodtizeing REG+O0I+POI, and the corresponding APFD values
of the suites prioritized using REG, sorted by suite in thsifpe x direction in decreasing order of the amount of inyeraent of

the REG+OI+POI approach (suites in which both REG+OI+P@IREG resulted in the same APFD value are not plotted). These
plots are for prioritization when statement coverage isiakto account.

The Benefit of REG+OI+POI Over

REG: Branch Coverage

tcas R totinfo _ sched _ sched2
T T T [T T T Q T T T T o T T
3 2 2
o 15 I3 o
C ol
o o o
o o o
2 g g
5os & Fowop
o o o
& & &
2 3]
I & oo — & oo 2 o \\‘¥\1
v v o
S sl g 9
< g 10 1 2 aof
§ § §
2 2 2
§ b)
& ol & N
“ S 20 S a0l
o o]
o ast a a
0 50 100 150 200 250 300 350 400 < 0 50 100 150 200 250 300 350 < o 20 40 60 80 100 120 140 160 180 o 20 40 60 80 100
Test Suite Test Suite Test Suite Test Suite
~ ptok _ ptok2 _ replace
O 8 T Q T T 1 T T T T
] 2 2
= “ 8 A
I 6 1 6 1
a oy el
o 4r o 4 o
2 2 g
i g g
A & &
o 2 5 2 o ?
& 5 &
3 N 32 3
2 oo 2 o i & o —
5 1 i 5
0 2 9] o -2
§ § 5
N s 4 e
5 5 5
W W w4
s g b
]] “
o 6 ° o
o a 8 a6
2 2 £
B & & P
< 0 50 100 150 200 B 0 50 100 150 200 250 i 0 50 100 150 200 250 300 350 400

Figure 3.

Test Suite

Test Suite

Test Suite

This figure is similar to Figure 2, except the plots here argfritization when branch coverage is taken into account

REG+OI+POI over REG: Area Under Curve to Accompany Figuraa@3

Program Statement Branch

Name Area Abovey = 0 | AreaBelowy = 0 | Ratio Above:Below [[Area Abovey = 0 | AreaBelowy = 0 | Ratio Above:Below
tcas 1689.66 1115.76 1.51 1668.80 888.79 1.88

totinfo 1091.33 556.82 1.96 915.39 405.73 2.26

sched 1510.27 1065.42 1.42 669.17 431.72 1.55
sched2 904.22 583.63 1.55 581.06 280.53 2.07

ptok 229.42 208.92 1.10 283.23 253.37 1.12

ptok2 782.71 100.72 7.77 363.96 284.72 1.28
replace 482.87 183.12 2.64 321.72 177.22 1.82

Table 2. Areas under the curves of the plots in Figures 2 and 3, botvedthe liney = 0 and below it, along with the corresponding
ratio values.

when using REG+OI+POI instead of REG for prioritiza- all programs when both the REG and REG+OI+POI ap-
tion. The area under each curve was computed in an approaches were used. The potential benefits of our approach
proximate manner by summing up the areas of individual are evident because significantly more suites are improved
rectangles below each curve, where the width of each rect-than made worse when output influences and potential out-
angle is one unit (one suite) and the height of each rectangleput influences are taken into account during prioritization
is the (absolute value of the) APFD difference for that suite We also tried to experiment with a variant of the above
From the data in this table, it is clear that as Figures 2 and 3approach. We grouped the test cases in a regression test
suggest, the area under the cual®vethe liney = 0 is suite into two sets, one set containing all those test cases
greater than the corresponding area under the doel@v that traversed a modification and the second set containing
the liney = 0, in all cases. The columns of the Table 2 la- all the test cases that did not traverse a modified statement.
beled “Ratio Above:Below” show the ratio of the area above We simply checked the statement number modified by the
y = 0 to the area below = 0. In all cases, this ratio is seeded fault in the program and then checked if the execu-
greater than 1. Moreover, in 4 cases the ratio is greater thanion trace of the test case traversed that statement when it
2 (in one such case, the ratio is greater than 7), indicatingwas executed for the correct version of the program. Note
that for these particular plots, there is more than twice thethat if none of the statements covered by a test case are
amount of area above the line= 0 as below it. These modified, it cannot change the output unless the program
results suggest that the cases in which REG+OI+POI leadsmodifications introduce some new code on the path tra-
to an improvement over REG may be much more signifi- versed by the test case. There were only 3 modifications
cant than the cases in which REG+OI+POI leads to poorerin which new statements were added among all the seeded
results than REG. errors in the Siemens suite programs. So, after grouping
In Table 3, we show the percentage of suites for eachthe test cases in the above two sets, we put the set of test
subject program such that the REG+OI+POI prioritization cases traversing modifications ahead of those not traggrsin
approach, resulted in better (higher), worse (lower), diedt modifications in the prioritized sequence. Next, we applied
same APFD values as compared to the REG prioritizationour REG+OI+POI heuristic to order the test cases within
approach. each set. We noticed significant improvement by this ap-
proach over the APFD values computed by REG only for

Program REGORPOl over REG: % Sultes Better/Worse/Samp> two programptok andptok2 Only for these two programs,
Name Better | Worse | Same || Befter | Worse | Same the test suites on average contained between 2-10 and 2-4
tcas 27.3 18.8 53.9 25.6 16.3 58.1 o H H ifina_
oo saa | 163 | 2os |l 263 | 130 | co07 tgst cases respectively that did no_t_ exercise any modifica
sched 201 | 151 | 648 || 107 | 75 | 818 tion. For other programs, the modifications were such that
sched2 9.6 66 | 838 || 6.9 33 | 898 ; ; ; i
otok 07 g7 | sie |l 151 | 110 | 769 a_llmost all test cases in the test suites exerC|sed_ the madific
ptok2 275 | 44 | 681 || 142 | 107 | 751 tions and therefore the average APFD values did not change
replace || 355 | 184 | 461 || 281 | 162 | 557 much with the above variant of the basic approach.

Table 3. The percentage of suites for each subject program Although we obtained consistent improvement with our

such that the REG+OI+POl approach yielded better, worse, approach when compared with the REG approach, we did
and same APFD values as opposed to the REG approach, not observe very large improvements in the APFD values
for both the statement and branch prioritizations. using our approach. We believe that the reason for this lies
in the semantics of the programs in the Siemens suite and
From Table 3, we can see that in all cases, therethe small size of statement (branch) coverage adequate test
are noticeably more suites that were improved by the suites for these programs. It turns out that for the Siemens
REG+OI+POI approach than those suites that were madesubject programs, it is oftenot the case that traversing a
worse, in terms of APFD value. However, it is also the case modification will expose a fault in the software. Indeed,
that the majority of suites had the same APFD value acrossTable 4 shows that at best, only about a quarter of the cases

in which a modification is exercised actually leads to afault ~ Based on our experimental results and analysis, we
being exposed. In some cases (especiatihed?2), the can also comment upon our expectations for how well
likelihood of exposing an error by traversing a modification REG+OI+POlI prioritization may perform on programs that

is extremely small. are much larger than the Siemens programs. On relatively
large programs in which relatively few modifications are

Program | % of Exercised Modffications thal made in uncommonly-traversed sections of code, it would
Name Lead o Exposed Faults make more sense to follow the variant of our approach that
totinfo 19.44 first focuses on those test cases that traverse a modification
zgﬂggz g:gg since many test cases may not traverse any modification and
ptok 15.14 therefore cannot expose any additional faults. In this,case
fég'l‘;ce o we expect that REG+OI+POlI can lead to even greater im-

provements in rate of fault detection over REG, since REG
does not consider which test cases actually traverse a mod-
ification. Also, large programs in which the output values
are very sensitive to each individual computation are yikel

to show greater improvement with our approach as well,
since one intuition guiding our heuristic is that travegsin

. . . - a modification will have an affect on the program output.
lead to a fgult being _e_xpo_sed IS evident b_y examining SOM€qn the other hand, large programs whose output values are
of the particular mod|f|pat|on5|ntroduced in the subjectpr not very sensitive to small changes in computation, or that
grams. For example, in one case faras, a statement of have been modified in frequently-traversed sections of code
the forma = a > b has.an operator char_nge to become may not show as much improvement using REG+OI+POl,
a = a >=b. However, this can only potentially cause the ,,q may Jead to results similar to those witnessed for the
defined value fon to change whem happens to equal Siemens programs in our experiments. However, it is im-

As ano;[hﬁr efzxample for prograsthed2, there is a rs}';a‘;]e- portant to note that the degree of benefit of our approach
ment of the formif(z = func())returnERROR, whic will vary, for large or small programs, depending upon the

IS (l:hgngef(fd to s(;mpl;r/]bﬁunc(). Irrlth|§ case,l the outputcan o ooram characteristics mentioned above and the distribu-
only be affected in the cases when tifeevaluates tdrue, iqn of modifications made to the programs.

which in turn may only occur in erroneous executions. As

afingl example_with programepl ace, ast{;\tement of the 5 Reated Work

formif(z&&y) is changedtef (x), which will not have an

affect on the program executiongfhappens to have value Several techniques [2, 9, 11, 14, 15] have been developed to
true. It turns out that many of the Siemens modifications prioritize the execution of existing test cases to exposksa

are such that output can be affected only in certain casesearly during the regression testing process. The technique
as in the above examples. The progracas outputs only developed in [15] prioritizes test cases in decreasingrorde
either an error message, or one of three possible output valof the number of impacted blocks (impacted blocks consist
ues. Programsched andsched?2 simulate the execution of old modified blocks and new blocks) that are likely to be
of processes in a system, but the output consists only of thecovered by the tests; a heuristic is used to determine which
processes in the order in which they finish in the system.impacted blocks are likely to be covered by each test. A test
Progranr epl ace outputs the same data that was inputted, case prioritization technique that uses historical exenut
with the exception that all occurrences of a specified string data was developed in [9]. In this approach, tests are pri-
are replaced with a new string. Given the specific output of oritized based on how often a test has been run lately, how
these programs, it is understandable that output values maynany faults the test has revealed recently, and the testing r
have less likelihood to be altered when a modified statementquirements have been exercised by the test case. The tech-
is executed (for example, perhaps a modification adjusts theniques discussed in [2, 11, 14] prioritize test cases based o
priority of a process in theched program, but the relative variations of the total/additional requirement coverage i
order in which processes finish in the system may remainformation of the tests, as collected during previous testin
unchanged). This observation explains why more signifi- of the software. In these studies, the prioritized testesuit
cantimprovements were not obtained by our approach whernoutperformed their unprioritized counterparts in terms of
compared to the REG approach. Overall, our experimen-improving the rate of fault detection, but the relative perf

tal results suggest that accounting for relevant slicing in mance of the prioritization techniques varied with the ehar
formation, along with information about the modifications acteristics of test suites, programs, and faults. For eX@amp
traversed by each test case, has potential when used as part some cases total coverage techniques performed better
of the test case prioritization process. than additional coverage techniques while the reverse was

Table 4. For all test cases among the subject programs,
the percentage of cases in which an exercised modification
actually leads to a fault being exposed due to a change in
program output.

The reason why many exercised modifications do not

true in other cases. Unlike the technique in [15], these-tech detect faults early in the testing process.

nigues do not take the modifications made to the software

into account while prioritizing the tests.

Korel and Laski [10] first introduced the notion of rele-
vant slices. Agrawal et al. [1] presented an improved ver-
sion of the definition of relevant slice and Gyimothy et
al. [3] presented an algorithm for computing relevant slice
These authors suggest that lookingpatentialdependen-
cies, besides justctualdependencies, are useful for debug-

ging when modifications are made to software.

Our own work combines the concept of relevant slices [1,
3], and the coverage-based prioritization techniques pre-
sented in [2, 11, 14], to obtain a new approach for test case
prioritization that accounts for the output-influencinglan
potentially-output-influencing coverage of test casesfafs
as we know, the approach presented in this paper is the first
attempt at incorporating the ideas of relevant slices in de-

veloping a new test case prioritization approach.
Arelated problem is that dfest Case Selectigd, 12, 1]

for regression testing. A regression test selection teglei
chooses, from an existing regression test suite, a subset of
test cases that are considered necessary to validate ndodifie
software. The approach in [4] uses static program slicing
to detect definition-use associations that are affected by a
program change. The work in [12] constructs control flow

References

[1] H. Agrawal, J. R. Horgan, E. W. Krauser, and S. London.

Incremental regression testintEEE International Confer-
ence on Software Maintenangeages 348—-357, 1993.

S. Elbaum, A. G. Malishvesky, and G. Rothermel. Test case
prioritization: A family of empirical studies.|EEE Trans.

on Software Engineerin@8(2):159-182, February 2002.

[3] T. Gyimothy, A. Beszedes, and |. Forgacs. An efficient rel

evant slicing method for debuggindCM/SIGSOFT Foun-
dations of Software Engineeringages 303-321, 1999.

R. Gupta, M. J. Harrold, and M. Soffa. An approach to re-
gression testing using slicingEEE International Confer-
ence on Software Maintenangeages 299-308, 1992.

] M. J. Harrold, R. Gupta, and M. L. Soffa. A methodology for

controlling the size of a test suitdlCM Trans. on Software
Engineering and Methodolog®(3):270-285, July 1993.

M. J. Harrold and G. Rothermel. Aristotle: A system for re
search on and development of program analysis based tools.
Technical Report OSU-CISRC-3/97-TR17, Ohio State Uni-
versity, March 1997.

http://ww. cse. unl .edu/ ~galileo/sir.

] M. Hutchins, H. Foster, T. Goradia, and T. Ostrand. Ex-

periments on the effectiveness of dataflow- and controlflow-
based test adequacy criteriBEE International Conference
on Software Engineeringrages 191-200, 1994.

graphs for a procedure or program and its modified version, [9] J.-M. Kim and A. Porter. A history-based test prioritiza

and uses these graphs to select test cases, from the regres-
sion test suite, that execute changed code. In [1], exetutio

slice based, dynamic slice based and the relevant slicelbase
approaches are proposed to determine the test cases in th
regression test suite on which the new and old programs

may produce different outputs.

The topic of Test Suite Minimizatiofil3, 5, 17, 16] is

tion technique for regression testing in resource consrhi
environments.|IEEE International Conference on Software
Engineering pages 119-129, 2002.

B. Korel and J. Laski. Algorithmic software fault lo¢za-
tion. Annual Hawaii International Conference on System
Sciencespages 246-252, 1991.

G. Rothermel and S. Elbaum. Putting your best tests for-
ward. |IEEE Software20(5):74-77, Aug./Sept. 2003.

related to that of test case prioritization because bothesha [12] G. Rothermeland M. J. Harrold. A safe, efficient regiass

the common goal of reducing the cost of testing by pro-
viding testers with a way of identifying “important” test
cases. However, unlike prioritization techniques, tegiesu
minimization techniques permanently discard a subset of
test cases from each suite. Prioritization techniqueshen t
other hand, only order all the test cases in a test suite with-[14]

out discarding any tests.

6 Conclusions

In this paper, we have presented a new approach for test case
prioritization that takes into account the output-influiegc
and potentially-output-influencing statements and braach
executed by the tests, as determined through the computa-
tion of relevant slices. We presented an experimental study
comparing the effectiveness of our approach with a tradi-

tional prioritization approach that only accounts for tbiat

(regular) statement and branch coverage of tests. Our-exper
imental results show that our new prioritization approach i
promising in terms of ordering the tests in suites so as to

test selection technigu&ACM Trans. on Software Engineer-
ing and Methodologypages 173-210, 1997.

G. Rothermel, M. J. Harrold, J. Ostrin, and C. Hong. An
empirical study of the effects of minimization on the fault
detection capabilities of test suitdEEE International Con-
ference on Software Maintenangages 34—43, 1998.

G. Rothermel, R. H. Untch, C. Chu, and M. J. Harrold. Pri-
oritizing test cases for regression testingEEE Trans. on
Software Engineering27(10):929-948, Oct. 2001.

A. Srivastava and J. Thiagarajan. Effectively priiaiitg
tests in development environme®CM/SIGSOFT Interna-
tional Symposium on Software Testing and Ana)ysiges
97-106, 2002.

S. Tallam and N. Gupta. A concept analysis inspireddyee
algorithm for test suite minimizationACM SIGPLAN SIG-
SOFT Workshop on Program Analysis for Software Tools
and EngineeringSept. 2005.

7] W. E.Wong, J. R. Horgan, S. London, and A. P. Mathur. Ef-

fect of test set minimization on fault detection effectigss.
Software - Practice and Experienc28(4):347-369, April
1998.

