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Abstract

Software testing and retesting occurs continuously dur-
ing the software development lifecycle to detect errors as
early as possible. The sizes of test suites grow as software
evolves. Due to resource constraints, it is important to pri-
oritize the execution of test cases so as to increase chances
of early detection of faults. Prior techniques for test case
prioritization are based on the total number of coverage re-
quirements exercised by the test cases. In this paper, we
present a new approach to prioritize test cases based on the
coverage requirements present in therelevant slicesof the
outputs of test cases. We present experimental results com-
paring the effectiveness of our prioritization approach with
that of existing techniques that only account for total re-
quirement coverage, in terms of ability to achieve high rate
of fault detection. Our results present interesting insights
into the effectiveness of using relevant slices for test case
prioritization.

1 Introduction
Software testing is an important and expensive stage of soft-
ware development. As software changes over time, test
suites are developed and used to test the modified software
to make sure that changes do not affect the existing func-
tionality in unintended ways, and to test for new function-
ality. This process is calledregression testing. Due to time
and resource constraints, it may not be possible to continu-
ally execute all the tests in suites on every testing iteration.
It is therefore important toprioritize (order) the execution of
test cases in test suites so as to execute those test cases early
on during regression testing, whose output is more likely to
change. Such a prioritization is expected to help inearly
detection of faultsduring regression testing. Techniques for
Test Case Prioritizationaddress this problem. In this paper,
we present a new approach for prioritizing the execution of
existing test cases with the goal of early detection of faults
in the regression testing process.

The prior test case prioritization techniques studied in
[2, 14] are primarily based on variations of thetotal re-
quirement coverageand theadditional requirement cover-
age of various structural elements in a program. For in-
stance, total statement coverage prioritization orders test
cases in decreasing order of the number of statements they
exercise. Additional statement coverage prioritization or-
ders test cases in decreasing order of the number of addi-
tional statements they exercise, that have not yet been cov-
ered by the tests earlier in the prioritized sequence. These
prioritization techniques do not take into consideration the
statements or branches that actually influenced, or could po-
tentially influence, the values of the program output. Nei-
ther do they take into consideration whether a test case tra-
verses a modified statement or not while prioritizing the test
cases.

It is intuitive to expect that theoutput of a test case, that
executes a larger number of statements that actually influ-
ence the output or have the potential to influence the output,
is more likely to get affected by the modification than tests
covering fewer such statements.Additionally, tests exer-
cising modified statements should have higher priority than
tests that do not traverse any modifications. In this paper,
we present a new approach for prioritizing test cases that is
based not only on total statement (branch) coverage, but that
also takes into account the number of statements (branches)
executed that influence or have potential to influence the
output produced by the test case. The set of statements that
influence, or have potential to influence, the output of a pro-
gram when run on a particular test case, correspond to the
relevant slice[1, 10, 3] computed on the output of the pro-
gram when executed by the test case. Our approach is based
on the following observation.If a modification in the pro-
gram has to affect the output of a test case in the regression
test suite, it must affect some computation in the relevant
slice of the output for that test case.Therefore, our heuris-
tic for prioritizing test cases assigns higher weight to a test
case with larger number of statements (branches) in its rele-
vant slice of the output. We implemented our approach and



performed an experimental study using the programs from
the Siemens suite [8] to evaluate the effectiveness of our
approach in early detection of faults during regression test-
ing. Our results show improvements over prior approaches
based on total statement (branch) coverage and provide in-
teresting insights into the use of size of relevant slices of
outputs in determining the relative importance of test cases
in revealing a change in the output during regression testing.

The remainder of this paper is organized as follows. The
background for our work is explained in section 2. Our ap-
proach and its motivation are explained in Section 3. Our
experimental study, along with results and discussion, are
given in Section 4. Related work is discussed in Section 5,
and our conclusions are given in Section 6.

2 Background

The test case prioritization problem can be defined [14] as
follows.

Problem statement: Given a test suiteT , the setPT

consisting of all the permutations of test cases inT , and
a functionf from PT to the set of real numbers, find a
T ′ ∈ PT such that (∀T ′′)(T ′′ 6= T ′)[f(T ′) ≥ f(T ′′)].

The specific focus of this paper and that of [14] is to find
an ordering of test casesT ′ of a suiteT with the goal of
increasing the likelihood of revealing faults earlier in the
testing process. A functionf that quantifies the rate of fault
detection for a test suite is the weighted “average percent-
age of faults detected” (APFD) value1 computed during the
execution of a test suite, as defined in [14]

The problem of test case prioritization as stated above is
an optimization problem and has exponential complexity in
the worst case. In [2, 14], the presented techniques are actu-
ally greedy heuristics in which test cases are ordered based
upon their requirement coverage (such as the total number
of statements or branches exercised). In their experimental
studies in [2], the Siemens suite [8] programs were used to
evaluate the effectiveness of the above heuristics. Each pro-
gram in the Siemens suite is associated with a set of faulty
versions (each containing a seeded error) and a pool of test
cases. Thus, the effectiveness of the above test case priori-
tization heuristics in early execution of test cases that affect
the output was measured by computing the rate at which the
seeded faults (program modifications) were exposed by the
test cases in the prioritized sequence. This rate was quan-
titatively measured by computing the APFD values for the
prioritized test suites.

1In order to compute the APFD measure for the execution of a prior-
itized test suite, we plot the percentage of faults detected(y-axis) versus
the fraction of test suite executed (x-axis). The area underthe curve in-
terpolating the points in this plot is the APFD measure. Morearea under
the curve (a higher APFD value) indicates that more faults were detected
when a smaller fraction of the prioritized suite was executed (more faults
were detected earlier on during execution of tests in the suite)

We use the notion of arelevant slice[10, 1, 3] to identify
the set of statements or branches that either influence, or
have potential to influence, the value of the output produced
by the test case.

Definition: Given a programP and its execution trace for
a test caset, a statements in the execution trace is in the
relevant sliceof the output if (1) at least one of the outputs
produced by the execution oft is directly or indirectly data
or control dependent upons; or (2) s is either a predicate
or a data-dependency of a predicate that may affect at least
one output produced by the execution oft if the predicate
evaluates to adifferentoutcome.

Essentially, for a statement to be in the relevant slice, it
must have either affected, or have potential to affect, [1, 3]
the output produced by a test case.

3 Our Approach
Intuitively, if a test case exercises a modified statement,

and that modified statement is also included in the relevant
slice of the output, then most likely the output of the test
case will be affected due to the modification. This is be-
cause every statement in the relevant either affects the out-
put or has potential to affect the output of the test case.
However, there can be modifications such as if a value is
incremented and subsequently decremented in the code be-
fore the value is used again in which the modification may
not affect the output. We illustrate this with the example
program given in Figure 1 when it is executed with the input
T = (a,b,c) = (1,5,4). The execution trace of the program
for testT has branchB1 evaluating tofalse and branchB3

subsequently evaluating totrue, and therefore the program
outputs the value 1.

1: read(a, b, c);
2: int x=0, y=0, z=0;

3: x := a + 1;

4: y := b + 1;

5: z := c + 1;

6: int w := 0;

B1: if x > 3 then
B2: if z > 4 then
7: w := w + 1;

endif
endif

B3: if y > 5 then

8: w := w + 1;
endif

9: write(w);

Figure 1. An example program. Given input (a,b,c) =
(1,5,4), the shaded lines indicate the relevant slice for out-
put variablew at line 9; the darker-shaded lines distinguish
those statements contained in the relevant slice that arenot
also contained in the dynamic slice.



Notice in the figure that the shaded lines (both the
lightly-shaded and darker shaded lines) indicate the relevant
slice of output variablew at line 9. The darker-shaded lines
indicate those statements that are in the relevant slice, but
not also in the dynamic slice, of variablew at line 9. The
reason branchB1 is not contained in thedynamicslice is
because the value ofw at line 9 is neither directly nor indi-
rectly data or control-dependent onB1 for testT. However,
B1 is contained in therelevantslice because although it did
not affect the value of the output in this case, it couldpoten-
tially affect the outputif the branch outcome had evaluated
to true instead offalse (because thetrue block of branch
B1 contains a potential definition of variablew). Similarly,
sinceB1 is data-dependent upon the definition ofx in line 3
(but no other statements are data-dependent uponx defined
in line 3), the line 3 is also contained in the relevant slice but
not in the dynamic slice (ie., line 3 did not actually affect,
but has potential to affect, the value of variablew at line 9).

Now suppose that the statement at line 3 gets modified
by mistake so that it changes fromx:=a+1 into x:=b+1.
Since line 3 is exercised and is also included in the relevant
slice of output variablew at line 9, we intuitively expect
that the error will be exposed by test caseT. Indeed, with
this modification it turns out that all three branches are ex-
ercised and evaluate totrue. As a result, the value 2 is
outputted (instead of the original value 1) and the erroneous
modification is exposed. This example highlights the fact
that the statement at line 3 certainly does have potential to
affect the program output.

While we might generally expect that an exercised mod-
ification that is also included in the relevant slice will af-
fect the output of a program, there do exist cases in which
exercising a modification, that is contained in the relevant
slice, will actuallynot change the output value(s) of a pro-
gram and therefore may not lead to a fault being exposed.
Consider the case in Figure 1 in which line 3 is again modi-
fied, but now it changes fromx:=a+1 into y:=a+1. With
this modification, the execution actually follows the origi-
nal path through the code in whichB1 evaluates tofalse

andB3 subsequently evaluates totrue, and therefore the
original computed value forw, 1, is outputted. This demon-
strates that it is not always true that exercising a modified
statement, that has potential to influence program output,
will actually cause the output value(s) to change. This im-
plies that there is no guarantee that a test case exercising
more modified statements that are contained in the relevant
slice, will necessarily expose more faults (or change the out-
put) than another test case exercising fewer modifications
that are in the relevant slice. Nevertheless, in practice we
might expect a higher likelihood that exercising a modifica-
tion that has potential to affect program output, will actu-
ally cause program output to change and therefore expose a
fault.

Let us next consider the case in which a modified state-
ment isnot contained in the relevant slice. From Figure 1,
notice that line 5 is not contained in the relevant slice. This
is because branchB2 is the only statement in the program
that is data-dependent upon the definition ofz in line 5, but
branchB2 is not even exercised by our testT (thus, line 5
is not included in the relevant slice). Suppose that line 5
is changed fromz:=c+1 into z:=b+1. With this modifi-
cation, the execution trace follows the original path ofB1

evaluating tofalse andB3 evaluating totrue, and the out-
put is not affected (since the modification affected the value
of the definition which is not used in the relevant slice). A
test case exercising a modified statement, that is not con-
tained in the relevant slice, will likely change the program
outputonly when the variable being defined by the modi-
fied statement is changed to another variable which is used
in the relevant slice(e.g., by modifying the variable in the
left-hand side of an assignment). To see this, suppose that
line 5 is changed fromz:=c+1 into y:=c+1. Then this
actually causes the executed path to change because now
althoughB1 still evaluates tofalse, we have thatB3 now
subsequently evaluates tofalse too. This causes the out-
putted value ofw to be 0, which is different from the origi-
nal outputted value of 1. However, we believe this case (in
which the left-hand side of an assignment is modified) to
be the only case in which an exercised modification will be
outsidethe relevant slice, yet may still affect the program
output.

The above example motivates the following approach.
While considering whether a test case is likely to change the
output when executed for the modified program, we need to
take into consideration the following factors.

1. The number of statements (branches) in the relevant
slice of output for the test case because any modifica-
tion shouldnecessarilyaffect some computation in the
relevant slice to be able to change the output for this
test case.

2. The number of statements that are executed by the test
case but are not in the relevant slice of the output be-
cause changing the variable on lhs of an assignment
not in the relevant slice may affect a computation in
the relevant slice and thus may change the output.

Based on the above factors, we propose the following
heuristic for test case prioritization. We order the test cases
in decreasing order of test case weight, where the weight
for a test is determined as follows:test case weight = #
of req’s present in the relevant slice + total # of req’s ex-
ercised by the test case. Ties are broken arbitrarily. This
criterion essentially gives “single” weight to those exer-
cised requirements that are outside the relevant slice, and
“double” weight to those exercised requirements that are
contained in the relevant slice. We call this approach the



“REG+OI+POI” approach for prioritization, where REG,
denotes REGular statement (branches) executed by the test
case, OI denotes the Output Influencing and POI denotes the
Potentially Output Influencing statements (branches) exe-
cuted by the test case. In the next section, we present
some experiments evaluating the effectiveness of the above
heuristic for test case prioritization.

4 Experimental Study

4.1 Experimental Study
We used the Siemens programs described in Table 1 as our
subject programs. Each program is associated with a set
of faulty versions (each containing a seeded error) and a
pool of test cases. The subject programs and their associ-
ated faulty versions and test pools were obtained from [7].

Program Lines # of Faulty Test Case Program
Name of Code Versions Pool Size Description
tcas 138 41 1608 altitude separation
totinfo 346 23 1052 info accumulator
sched 299 8 2650 priority scheduler
sched2 297 10 2710 priority scheduler
ptok 402 7 4130 lexical analyzer
ptok2 483 10 4115 lexical analyzer
replace 516 32 5542 pattern substituter

Table 1. Siemens suite of programs.

The goal of our experiments is to see how well our pri-
oritized suites for the heuristic proposed in section 3 per-
form in terms of rate of fault detection, with respect to
the faulty versions provided with the Siemens programs.
Our experimental approach is to generate test suites, prior-
itize them, and then measure the resulting APFD value for
each prioritized suite. Similar to the experimental setup in
[2, 14], we generated 1000 branch-coverage adequate test
suites from the provided test pools for each program. For
each test case, we measured the total set of exercised state-
ments and branches using instrumented versions of the sub-
ject programs as generated by the Aristotle program anal-
ysis tool [6]. For each test case we also computed the set
of statements and branches in the relevant slice based on
the program output generated when executing the test case
on the given subject program. To compute a relevant slice,
we first computed the statements in the dynamic slice of the
program output by computing the transitive closure of data
and control dependences of the output exercised by the test
case. Then, we augmented the dynamic slice with the ad-
ditional statements/branches that were potentially-output-
influencing (this would normally involve static analysis, but
we tried to approximate this by looking at the execution
traces of all the tests in the large test pools provided with the
Siemens suite programs to see if changing the branch out-
come would affect the program output or not) and their cor-
responding data dependencies to obtain the relevant slices.

Given the sets of regular exercised statements and
branches along with the corresponding relevant slices for

each test case, we used this information to prioritize the test
cases and afterwards computed the APFD value for each
prioritized suite in order to evaluate the suite’s rate of fault
detection2. We examined the types of errors introduced in
the faulty versions of each subject program and identified
six distinct categories of seeded errors: (1) changing the
operator in an expression, (2) changing an operand in an ex-
pression, (3) changing the value of a constant, (4) removing
code, (5) adding code, and (6) changing the logical behavior
of the code (usually involving a few of the other categories
of error types simultaneously in one faulty version). Thus,
the faulty versions used in our experiments cover a wide
variety of fault types.

We conducted experiments with the REG+OI+POI
heuristic proposed in section 3. For comparison, we also
prioritized the tests using the approach in [2, 14] that only
accounts for total requirement coverage, and we ordered the
test cases in decreasing order of the number of exercised
statements/branches covered by each test case (ties are bro-
ken arbitrarily). We call this the “REG” approach.
4.2 Results and Discussion
The plots in Figures 2 and 3 illustrate the benefit of the
REG+OI+POI approach over the REG approach in terms
of promoting improved APFD values for prioritized suites.
Specifically, for each plot, we consider every test suite fora
given subject program in which the REG+OI+POI approach
and the REG approach resulted indifferentcomputed APFD
values. Then, for each such suite we compute thediffer-
encebetween the REG+OI+POI APFD value, and the REG
APFD value, to obtain a measure of the improvement of the
REG+OI+POI approach in terms of APFD value (negative
differences occur when REG+OI+POI performs worse than
REG). Finally, we order these suites in decreasing order of
the amount of benefit of the REG+OI+POI approach, and
then plot the data3.

Table 2 is meant to accompany Figures 2 and 3. In this
table, we present values computed for the area under the
curve of each plot, including the areas both above and be-
low the liney = 0. These areas respectively represent a
measure of the improvement and the worsening witnessed

2To measure fault detection, similar to as done in [2, 14], we measured
the set of faults exposed by each test case by executing everytest case on
each faulty version of the corresponding subject program, and compared
the output of these faulty versions to the output generated when the test was
run on the base version (the “oracle”) of the program. If the base version
output differed from some faulty version output when both versions were
run on a particular test case, this indicated that a fault wasexposed.

3In a graph, each unit along the x-axis represents a suite, andthe y-axis
represents the percentage difference in APFD values for a suite between
the REG+OI+POI and the REG approaches. Each graph also includes the
line y = 0, because the point at which the curve crosses this axis as one
moves in the positive x direction, is the point at which suites transition
from being better to being worse using the REG+OI+POI prioritization
approach. Also, each graph includes a vertical line at the midpoint along
the horizontal axis to show the median suite in the ordered sequence of
suites along the x-axis.
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Figure 2. The difference between the APFD values of suites prioritized using REG+OI+POI, and the corresponding APFD values
of the suites prioritized using REG, sorted by suite in the positive x direction in decreasing order of the amount of improvement of
the REG+OI+POI approach (suites in which both REG+OI+POI and REG resulted in the same APFD value are not plotted). These
plots are for prioritization when statement coverage is taken into account.
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Figure 3. This figure is similar to Figure 2, except the plots here are for prioritization when branch coverage is taken into account.



REG+OI+POI over REG: Area Under Curve to Accompany Figures 2and 3
Program Statement Branch
Name Area Abovey = 0 Area Belowy = 0 Ratio Above:Below Area Abovey = 0 Area Belowy = 0 Ratio Above:Below
tcas 1689.66 1115.76 1.51 1668.80 888.79 1.88
totinfo 1091.33 556.82 1.96 915.39 405.73 2.26
sched 1510.27 1065.42 1.42 669.17 431.72 1.55
sched2 904.22 583.63 1.55 581.06 280.53 2.07
ptok 229.42 208.92 1.10 283.23 253.37 1.12
ptok2 782.71 100.72 7.77 363.96 284.72 1.28
replace 482.87 183.12 2.64 321.72 177.22 1.82

Table 2. Areas under the curves of the plots in Figures 2 and 3, both above the liney = 0 and below it, along with the corresponding
ratio values.

when using REG+OI+POI instead of REG for prioritiza-
tion. The area under each curve was computed in an ap-
proximate manner by summing up the areas of individual
rectangles below each curve, where the width of each rect-
angle is one unit (one suite) and the height of each rectangle
is the (absolute value of the) APFD difference for that suite.
From the data in this table, it is clear that as Figures 2 and 3
suggest, the area under the curveabovethe liney = 0 is
greater than the corresponding area under the curvebelow
the liney = 0, in all cases. The columns of the Table 2 la-
beled “Ratio Above:Below” show the ratio of the area above
y = 0 to the area belowy = 0. In all cases, this ratio is
greater than 1. Moreover, in 4 cases the ratio is greater than
2 (in one such case, the ratio is greater than 7), indicating
that for these particular plots, there is more than twice the
amount of area above the liney = 0 as below it. These
results suggest that the cases in which REG+OI+POI leads
to an improvement over REG may be much more signifi-
cant than the cases in which REG+OI+POI leads to poorer
results than REG.

In Table 3, we show the percentage of suites for each
subject program such that the REG+OI+POI prioritization
approach, resulted in better (higher), worse (lower), and the
same APFD values as compared to the REG prioritization
approach.

REG+OI+POI over REG: % Suites Better/Worse/Same
Program Statement Branch
Name Better Worse Same Better Worse Same
tcas 27.3 18.8 53.9 25.6 16.3 58.1
totinfo 24.4 16.3 59.3 26.3 13.0 60.7
sched 20.1 15.1 64.8 10.7 7.5 81.8
sched2 9.6 6.6 83.8 6.9 3.3 89.8
ptok 9.7 8.7 81.6 12.1 11.0 76.9
ptok2 27.5 4.4 68.1 14.2 10.7 75.1
replace 35.5 18.4 46.1 28.1 16.2 55.7

Table 3. The percentage of suites for each subject program
such that the REG+OI+POI approach yielded better, worse,
and same APFD values as opposed to the REG approach,
for both the statement and branch prioritizations.

From Table 3, we can see that in all cases, there
are noticeably more suites that were improved by the
REG+OI+POI approach than those suites that were made
worse, in terms of APFD value. However, it is also the case
that the majority of suites had the same APFD value across

all programs when both the REG and REG+OI+POI ap-
proaches were used. The potential benefits of our approach
are evident because significantly more suites are improved
than made worse when output influences and potential out-
put influences are taken into account during prioritization.

We also tried to experiment with a variant of the above
approach. We grouped the test cases in a regression test
suite into two sets, one set containing all those test cases
that traversed a modification and the second set containing
all the test cases that did not traverse a modified statement.
We simply checked the statement number modified by the
seeded fault in the program and then checked if the execu-
tion trace of the test case traversed that statement when it
was executed for the correct version of the program. Note
that if none of the statements covered by a test case are
modified, it cannot change the output unless the program
modifications introduce some new code on the path tra-
versed by the test case. There were only 3 modifications
in which new statements were added among all the seeded
errors in the Siemens suite programs. So, after grouping
the test cases in the above two sets, we put the set of test
cases traversing modifications ahead of those not traversing
modifications in the prioritized sequence. Next, we applied
our REG+OI+POI heuristic to order the test cases within
each set. We noticed significant improvement by this ap-
proach over the APFD values computed by REG only for
two programsptok andptok2. Only for these two programs,
the test suites on average contained between 2-10 and 2-4
test cases respectively that did not exercise any modifica-
tion. For other programs, the modifications were such that
almost all test cases in the test suites exercised the modifica-
tions and therefore the average APFD values did not change
much with the above variant of the basic approach.

Although we obtained consistent improvement with our
approach when compared with the REG approach, we did
not observe very large improvements in the APFD values
using our approach. We believe that the reason for this lies
in the semantics of the programs in the Siemens suite and
the small size of statement (branch) coverage adequate test
suites for these programs. It turns out that for the Siemens
subject programs, it is oftennot the case that traversing a
modification will expose a fault in the software. Indeed,
Table 4 shows that at best, only about a quarter of the cases



in which a modification is exercised actually leads to a fault
being exposed. In some cases (especiallysched2), the
likelihood of exposing an error by traversing a modification
is extremely small.

Program % of Exercised Modifications that
Name Lead to Exposed Faults
tcas 5.19
totinfo 19.44
sched 9.98
sched2 3.96
ptok 15.14
ptok2 26.76
replace 5.46

Table 4. For all test cases among the subject programs,
the percentage of cases in which an exercised modification
actually leads to a fault being exposed due to a change in
program output.

The reason why many exercised modifications do not
lead to a fault being exposed is evident by examining some
of the particular modifications introduced in the subject pro-
grams. For example, in one case fortcas, a statement of
the forma = a > b has an operator change to become
a = a >= b. However, this can only potentially cause the
defined value fora to change whena happens to equalb.
As another example for programsched2, there is a state-
ment of the formif(x = func())returnERROR, which
is changed to simply befunc(). In this case, the output can
only be affected in the cases when theif evaluates totrue,
which in turn may only occur in erroneous executions. As
a final example with programreplace, a statement of the
form if(x&&y) is changed toif(x), which will not have an
affect on the program execution ify happens to have value
true. It turns out that many of the Siemens modifications
are such that output can be affected only in certain cases,
as in the above examples. The programtcas outputs only
either an error message, or one of three possible output val-
ues. Programssched andsched2 simulate the execution
of processes in a system, but the output consists only of the
processes in the order in which they finish in the system.
Programreplace outputs the same data that was inputted,
with the exception that all occurrences of a specified string
are replaced with a new string. Given the specific output of
these programs, it is understandable that output values may
have less likelihood to be altered when a modified statement
is executed (for example, perhaps a modification adjusts the
priority of a process in thesched program, but the relative
order in which processes finish in the system may remain
unchanged). This observation explains why more signifi-
cant improvements were not obtained by our approach when
compared to the REG approach. Overall, our experimen-
tal results suggest that accounting for relevant slicing in-
formation, along with information about the modifications
traversed by each test case, has potential when used as part
of the test case prioritization process.

Based on our experimental results and analysis, we
can also comment upon our expectations for how well
REG+OI+POI prioritization may perform on programs that
are much larger than the Siemens programs. On relatively
large programs in which relatively few modifications are
made in uncommonly-traversed sections of code, it would
make more sense to follow the variant of our approach that
first focuses on those test cases that traverse a modification,
since many test cases may not traverse any modification and
therefore cannot expose any additional faults. In this case,
we expect that REG+OI+POI can lead to even greater im-
provements in rate of fault detection over REG, since REG
does not consider which test cases actually traverse a mod-
ification. Also, large programs in which the output values
are very sensitive to each individual computation are likely
to show greater improvement with our approach as well,
since one intuition guiding our heuristic is that traversing
a modification will have an affect on the program output.
On the other hand, large programs whose output values are
not very sensitive to small changes in computation, or that
have been modified in frequently-traversed sections of code,
may not show as much improvement using REG+OI+POI,
and may lead to results similar to those witnessed for the
Siemens programs in our experiments. However, it is im-
portant to note that the degree of benefit of our approach
will vary, for large or small programs, depending upon the
program characteristics mentioned above and the distribu-
tion of modifications made to the programs.

5 Related Work

Several techniques [2, 9, 11, 14, 15] have been developed to
prioritize the execution of existing test cases to expose faults
early during the regression testing process. The technique
developed in [15] prioritizes test cases in decreasing order
of the number of impacted blocks (impacted blocks consist
of old modified blocks and new blocks) that are likely to be
covered by the tests; a heuristic is used to determine which
impacted blocks are likely to be covered by each test. A test
case prioritization technique that uses historical execution
data was developed in [9]. In this approach, tests are pri-
oritized based on how often a test has been run lately, how
many faults the test has revealed recently, and the testing re-
quirements have been exercised by the test case. The tech-
niques discussed in [2, 11, 14] prioritize test cases based on
variations of the total/additional requirement coverage in-
formation of the tests, as collected during previous testing
of the software. In these studies, the prioritized test suites
outperformed their unprioritized counterparts in terms of
improving the rate of fault detection, but the relative perfor-
mance of the prioritization techniques varied with the char-
acteristics of test suites, programs, and faults. For example,
in some cases total coverage techniques performed better
than additional coverage techniques while the reverse was



true in other cases. Unlike the technique in [15], these tech-
niques do not take the modifications made to the software
into account while prioritizing the tests.

Korel and Laski [10] first introduced the notion of rele-
vant slices. Agrawal et al. [1] presented an improved ver-
sion of the definition of relevant slice and Gyimothy et
al. [3] presented an algorithm for computing relevant slices.
These authors suggest that looking atpotentialdependen-
cies, besides justactualdependencies, are useful for debug-
ging when modifications are made to software.

Our own work combines the concept of relevant slices [1,
3], and the coverage-based prioritization techniques pre-
sented in [2, 11, 14], to obtain a new approach for test case
prioritization that accounts for the output-influencing and
potentially-output-influencingcoverage of test cases. Asfar
as we know, the approach presented in this paper is the first
attempt at incorporating the ideas of relevant slices in de-
veloping a new test case prioritization approach.

A related problem is that ofTest Case Selection[4, 12, 1]
for regression testing. A regression test selection technique
chooses, from an existing regression test suite, a subset of
test cases that are considered necessary to validate modified
software. The approach in [4] uses static program slicing
to detect definition-use associations that are affected by a
program change. The work in [12] constructs control flow
graphs for a procedure or program and its modified version,
and uses these graphs to select test cases, from the regres-
sion test suite, that execute changed code. In [1], execution
slice based, dynamic slice based and the relevant slice based
approaches are proposed to determine the test cases in the
regression test suite on which the new and old programs
may produce different outputs.

The topic ofTest Suite Minimization[13, 5, 17, 16] is
related to that of test case prioritization because both share
the common goal of reducing the cost of testing by pro-
viding testers with a way of identifying “important” test
cases. However, unlike prioritization techniques, test suite
minimization techniques permanently discard a subset of
test cases from each suite. Prioritization techniques, on the
other hand, only order all the test cases in a test suite with-
out discarding any tests.

6 Conclusions

In this paper, we have presented a new approach for test case
prioritization that takes into account the output-influencing
and potentially-output-influencing statements and branches
executed by the tests, as determined through the computa-
tion of relevant slices. We presented an experimental study
comparing the effectiveness of our approach with a tradi-
tional prioritization approach that only accounts for the total
(regular) statement and branch coverage of tests. Our exper-
imental results show that our new prioritization approach is
promising in terms of ordering the tests in suites so as to

detect faults early in the testing process.
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