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Abstract

Software testing is a critical part of software develop-
ment. Test suite sizes may grow significantly with subse-
quent modifications to the software over time. Due to time
and resource constraints for testing, test suite minimiza-
tion techniques attempt to remove those test cases from the
test suite that have become redundant over time since the
requirements covered by them are also covered by other
test cases in the test suite. Prior work has shown that
test suite minimization techniques can severely compromise
the fault detection effectiveness of test suites. In this pa-
per, we present a novel approach to test suite reduction that
attempts to selectively keep redundant tests in the reduced
suites. We implemented our technique by modifying an ex-
isting heuristic for test suite minimization. Our experiments
show that our approach can significantly improve the fault
detection effectiveness of reduced suites without severely af-
fecting the extent of test suite size reduction.

1 Introduction

Software testing and retesting occurs continuously during
the software development lifecycle. As software grows and
evolves, so too do the accompanying test suites. Over time,
some test cases in a test suite may become redundant as the
requirements executed by them are also executed by other
test cases in the test suite. Due to time and resource con-
straints for re-testing the software every time it is modified,
it is important to develop techniques that keep the test suite
size manageable by removing those test cases that may have
become redundant with respect to the coverage of program
requirements.

Since test suite minimization removes test cases, mini-
mized suites may be weaker at detecting faults in software
than their unminimized counterparts. Previous work on test
suite minimization has shown some conflicting results. In
[18], it was shown that minimizing test suites while keep-
ing all-uses coverage constant could result in little to no

loss in fault detection effectiveness. However, the empir-
ical study conducted in [14] suggests that minimized test
suites can severely compromise the fault detection capabil-
ities of the test suites. There are two implications of this
conflict: first, there are situations where minimization can
achieve high suite size reduction without significantly de-
creasing fault detection effectiveness; second, there arealso
situations where minimization can achieve high suite size
reduction at the expense of significant loss in fault detec-
tion effectiveness.

Intuitively, any time a test case is thrown away from a
suite, the suite loses an opportunity for detecting faults.Test
suite reduction, therefore, ultimately involves a tradeoff be-
tween the suite’s size and fault detection effectiveness. The
focus of the approach for test suite reduction developed in
this paper is to achieve high suite size reduction while si-
multaneously allowing for low fault detection effectiveness
loss. The intuition driving our current work is that when a
non-reduced suite contains lots of redundancy with respect
to a coverage criterion, it may be helpful to selectively keep
some of that redundancy in the reduced test suite so as to re-
tain more fault detection effectiveness in the reduced suite,
hopefully without significantly affecting the amount of suite
size reduction. Thetest suite minimizationproblem [7] can
be stated as follows.

Given: A test suiteT , a set of testing requirements{r1,
r2,· · ·,rn}, that must be satisfied to provide the desired test
coverage of the program, and subsets{T1, T2, · · · , Tn} of
T , one associated with each of theri’s such that any one of
the test casestj belonging toTi coversri.

Problem: Find aminimal cardinalitysubset ofT that exer-
cises allri’s exercised by the unminimized test suiteT .

For example, the desired coverage of the program may be a
set of test cases that cover all edges in the control flow graph
of the program. The test suite minimization problem then is:
given a test suite satisfying the all-edges adequacy criterion,
find a minimal cardinality subset of the test suite that covers
all edges in the program. The existing techniques for test



suite minimization do not consider keeping any redundancy
with respect to the given coverage criterion during the suite
minimization process.

Any test suite minimization algorithm addressing the
above problem can be modified to incorporate our approach
to generate reduced test suites that selectively retain some
of the test cases that are redundant with respect to the given
coverage criterion. An algorithm based on a heuristic (re-
ferred to as the HGS algorithm from here onwards) to select
a representative set of test cases from a test suite, providing
the same coverage as the entire test suite, was developed
by Harrold, Gupta and Soffa [7]. In this paper, we specifi-
cally consider this algorithm for test suite minimization and
modify it to implement our approach for test suite reduction
with selective redundancy. We present the results of our ex-
periments to evaluate the effectiveness of our approach in
generating better quality (in terms of their fault detection
capability) reduced suites for the Siemens suite programs
[2, 11, 13]. The main contributions of this paper are as fol-
lows:

• A novel yet simple approach to test suite reduction
with selective redundancy.

• Our experimental results clearly show the potential of
our new technique in selecting a small set of redundant
test cases which have a high chance of detecting new
faults.

The remainder of the paper is organized as follows. In the
next section, we motivate our approach with an example.
Our algorithm for test suite reduction with selective redun-
dancy is described in section 3. In section 4, we present an
experimental study comparing an existing test suite mini-
mization technique with our modified version that takes re-
dundancy into account. In section 5, we discuss the related
work. We present the conclusions and our future work in
section 6.

2 A Motivational Example
We now present a simple example program to motivate our
idea of selectively keeping redundant test cases in a reduced
test suite generated by a test suite minimization algorithm.
The example program and a corresponding branch coverage
adequate test suiteT with some redundant test cases with
respect to branch coverage are shown in Figure 1.

The branches covered by each test case are marked with
anX in the respective columns in Table 1. Since our im-
plementation of our approach to test suite reduction with
selective redundancy is based on the HGS test suite mini-
mization algorithm [7], we next briefly present the steps of
the HGS algorithm.

1. Initially, all requirements are unmarked.

2. For each requirement that is exercised by only one test
case each, add each of these test cases to the mini-

mized suite and mark the requirements covered by the
selected test cases.

3. Consider the unmarked requirements in increasing or-
der of the cardinality of the set of test cases exercising
a requirement. If several requirements are tied since
the sets of test cases exercising them have the same car-
dinality, select the test case that would mark the high-
est number of unmarked requirements tied for this car-
dinality. If multiple such test cases are tied, break the
tie in favor of the test case that would mark the high-
est number of requirements with testing sets of suc-
cessively higher cardinalities; if the highest cardinality
is reached and some test cases are still tied, arbitrarily
select a test case among those tied. Mark the require-
ments exercised by the selected test. Remove test cases
that become redundant as they no longer cover any of
the unmarked requirements.

4. Repeat the above step until all testing requirements are
marked.

We first illustrate how the HGS algorithm will generate a
minimized test suite that covers all the branches of the ex-
ample program in Figure 1. BranchB1

T is executed only
by test caset1. Also, branchB4

F is executed only by test
caset2. Therefore, test casest1 andt2 are added to the min-
imized suite and the branches covered by these test cases,
B1

T , B1
F , B2

T , B2
F , B3

T , B3
F andB4

F , are marked.
This makes test caset3 redundant since all the branches
covered byt3 are marked. Now only branchB4

T is un-
marked. Therefore, eithert4 or t5 can be selected to cover
B4

T . Since the tie in this case is broken arbitrarily, lett4
be selected for adding to the minimized suite. Thus, the
minimized branch coverage suite generated by the HGS al-
gorithm for this example is{t1, t2, t4}. Now, test caset5 is
identified as redundant and the algorithm terminates since
all the branches are marked. Note that unselected test case
t3 - identified as redundant for branch coverage - exposes a
divide-by-zero error in this example.

Now we illustrate our approach for generating a reduced
branch coverage adequate test suite by selectively keeping
some redundant test cases in the reduced suite. Let us col-
lect the coverage information for a secondary criterion, such
as the all def-use pairs criterion, for all the test cases in the
test suiteT for the example program in Figure 1. This in-
formation is shown in Table 2. Our approach is tomod-
ify the step that identifies redundant test casesin the test
suite minimization algorithm. Specifically, when the HGS
algorithm identifies a test case as redundant since all the
branches covered by this test case have been marked, we
check if this test case is also redundant with respect to the
secondary criterion. If this is the case, we identify the test
case as redundant. Otherwise, we add the test case to the
reduced test suite.



In this example, aftert1 andt2 are added to the reduced
suite by the HGS algorithm,t3 is identified as redundant
with respect to branch coverage since all the branches cov-
ered byt3 are already covered byt1 andt2. However, we
now check ift3 is also redundant with respect to the sec-
ondary criterion. In this case we find thatt3 covers the
def-use pairx(4, 6) that is not covered by eithert1 or t2.
Therefore, we do not identifyt3 as redundant and we add it
to the reduced test suite. Thus, in our approach the reduced
test suite at this point containst1, t2, andt3. Now, either
one oft4 or t5 can be chosen next to cover the branchBT

4
.

Let t4 be added to the reduced test suite. Thus, the require-
mentBT

4 also gets marked. At this point the test caset5
becomes redundant with respect to branch coverage as well
as with respect to the coverage of the secondary criterion.
Therefore, the reduced test suite generated by our approach
for this example is{t1, t2, t3, t4}. Note that this reduced
test suite will expose the divide-by-zero error at line 13.

1: read(a,b,c,d);
B1: if ( a > 0 )
2: x = 2; A Branch Coverage adequate SuiteT

3: else
4: x = 5; t1: (a = 1, b = 1, c = -1, d = 0)
5: endif t2: (a = -1, b = -1, c = 1, d = -1)
B2: if ( b > 0) t3: (a = -1, b = 1, c = -1, d = 0)
6: y = 1 + x; t4: (a = -1, b = 1, c = 1, d = 1)
7: endif t5: (a = -1, b = -1, c = 1, d = 1)
B3: if ( c > 0)
B4: if ( d > 0)
8: output(x);
9: else
10: output(10);
11: endif
12: else
13: output(1/(y-6));
14: endif

Figure 1. An example program with a branch
coverage adequate test suite T .

Test: BT

1
BF

1
BT

2
BF

2
BT

3
BF

3
BT

4
BF

4

Case

t1: X X X
t2: X X X X
t3: X X X
t4: X X X X
t5: X X X X

Table 1. Branch coverage information for test
cases in T .

For comparison with our approach explained above, let us
apply the HGS algorithm directly to Table 2 to compute
a minimized suite with respect to the secondary criterion
without retaining redundancy. Test caset1 will be added to
the minimized suite since it covers the def-use pairx(2, 6)
that is executed only byt1. Sincet1 also coversy(6, 13),
a(1, B1), b(1, B2) and c(1, B3), these def-use pairs get
marked. Now only 3 def-use pairs are unmarked, namely

x(4, 6), x(4, 8) and d(1, B4) which are respectively exe-
cuted by 2, 2 and 3 test cases. In the next step, we consider
the requirementsx(4, 6) andx(4, 8) since each of these is
executed by test sets of cardinality 2. We now select testt4
since it executes bothx(4, 6) andx(4, 8). At this point all
the secondary requirements are marked and the HGS algo-
rithm terminates with the minimized test suite{t1, t4}.

Note that this minimized test suite is not branch cover-
age adequate since it does not cover the branchBF

2
. Nor

does it expose the divide-by-zero error at line 13. This ex-
ample points out that some branches such asBF

2
that do

not define or use a variable may not be covered if the min-
imized test suite with respect to the secondary criterion is
generated. Note that if we applied the HGS algorithm to
generate a minimized suite without redundancy for both the
branch coverage and the coverage of the secondary crite-
rion simultaneously, then the same minimized suite{t1, t2,
t4} as generated in minimizing with respect to the branch
coverage would be generated. In this case again, the divide-
by-zero error at line 13 would be missed.

Therefore, the above example suggests that our approach
to test suite reduction with retaining selective redundancy
in the reduced test suite may be preferable to either of the
non-redundancy minimization approaches. The above ex-
ample also provides insight into why this is so. The def-use
pair x(4, 6) is exercised by botht3 andt4. The test caset3
exercises a combination of branch outcomes not executed
by the other test cases and this combination of branch out-
comes exposes the divide-by-zero error. However, in both
of the above test suite minimization schemes without redun-
dancy,t3 becomes redundant due to the other test cases that
are added to the minimized test suite early on in the mini-
mization algorithm. However, in our approach as soon as a
test case becomes redundant according to branch coverage,
we add it to the reduced suite if it adds new def-use pair
coverage. Therefore, it allowst3 to be added to the reduced
suite beforet4 is added to the test suite.

Thus, while our reduction with redundancy approach
achieves slightly less suite size reduction, it is also likely
to retain test cases that execute different combinations of
branch outcomes than those covered by the test cases al-
ready in the minimized suite, even though these test cases
have become redundant with respect to branch coverage.
Thus, we see that there is something significant that may
be gained by approaching the test suite reduction problem
with the goal ofadding some, rather than simply removing
all, redundancy.

3 Test Suite Reduction With Selective Re-
dundancy

Our proposed approach to test suite reduction is based on
the following key observation. Test suite minimization tech-
niques attempt to throw away test cases that are redun-



test case x(2,6) x(4,6) x(4,8) y(6,13) a(1,B1) b(1,B2) c(1,B3) d(1,B4)

t1: X X X X X
t2: X X X X
t3: X X X X X
t4: X X X X X X
t5: X X X X X

Table 2. Definition-use pair coverage information for test c ases in T .

dant with respect to the coverage criterion for minimiza-
tion. However, in the absence of an ideal coverage crite-
rion, throwing away test cases can result in significant loss
of fault detection capability [14]. Therefore, we believe that
the test suite reduction problem should be viewed from the
perspective of keeping redundant test cases that may exer-
cise different situations in program execution even though
they are redundant with respect to the coverage criterion for
test suite minimization. For making a distinction between
the primary coverage criterion used for test suite reduction
and additional requirements whose coverage determines if a
redundant test case should be added to the reduced suite, we
respectively refer to them asprimaryandsecondarycriteria.
Our approach is very general and even some requirements
derived from black-box testing could be used as secondary
requirements in conjunction with the statement or branch
coverage criteria that may be used as a primary criterion in
this approach.

We developed a specific implementation of our test suite
reduction with redundancy algorithm by adding a new step
to the HGS heuristic algorithm [7]. Instead of throwing
away test cases that are redundant with respect to the pri-
mary requirement coverage criterion for test suite mini-
mization in the original HGS algorithm, our new step exam-
ines the redundant test cases with respect to the coverage of
some additional secondary requirements and uses this infor-
mation to decide whether to add the test case to the reduced
suite. Figures 2, 3 and 4 show our implementation of our
approach based on the HGS test suite minimization algo-
rithm.

Set of primary testing requirements:r1, r2, ...,rn.
Set of secondary requirements:r′1, r′2, ...,r′m.
Test cases in unreduced test suite:t1, t2, ...,tnt.
Input: T1, T2, ...,Tn: test sets forr1, r2, ...,rn respectively.

T ′

1, T ′

2, ...,T ′

m: test sets forr′1, r′2, ...,r′m respectively.
Output: RS: a reduced subset oft1, t2, ...,tnt

Figure 2. Input/output for our algorithm.

The input and output of our algorithm are shown above in
Figure 2. The main algorithm for test suite reduction with
selective redundancy is shown in Figure 3, and Figure 4
shows a functionSelectTeststhat is used by the main al-
gorithm. As shown in Figure 2, our algorithm takes as input
two collections of associated testing sets.T1, T2, ...,Tn are
the testing sets corresponding to primary requirements such
thatTi contains the set of test cases that cover the primary

requirementri. Similarly,T ′
1
, T ′

2
, ...,T ′

m are the testing sets
corresponding to secondary requirements such thatT ′

i con-
tains the set of test cases that cover the secondary require-
mentr′i. Now we describe the steps in the main algorithm
in Figure 3.

Step 1: Initialization. This step simply initializes the vari-
ables and data structures that will be maintained throughout
the execution of the algorithm. After initialization, the main
program loop begins which attempts to select test cases that
cover the primary requirements that are currently uncovered
by the reduced suite (initially empty). The uncovered pri-
mary requirements are considered in increasing order of as-
sociated testing set cardinality.

Step 2: Select the Next Test Case According to the Pri-
mary Requirement. The algorithm first collects together
all the test cases comprising the testing sets of the current
cardinality that are associated with uncovered primary re-
quirements. This is the pool from which the next selected
test case (with respect to the primary requirements) will be
selected. The algorithm next decides which of the tests in
the pool to select by giving preference to the test case that
covers the most uncovered requirements whose testing sets
are of the current cardinality. In the event of a tie, the al-
gorithm recursively gives preference to the test case among
the tied elements that covers the most uncovered require-
ments whose testing sets are of successively higher cardi-
nalities. If the cardinality reaches the maximum cardinality
and there are still ties, an arbitrary test case is selected from
among the ties. The selected test case is then added to the
reduced suite.

Step 3: Mark Newly-Covered Requirements and Update
Coverage Information. At this point, we have added a
new test case to the reduced suite. This test case covers
certain primary requirements, so the algorithm updates its
data structures to reflect the current primary coverage infor-
mation of the reduced suite. Additionally, if any test case is
discovered to become redundant with respect to the primary
requirements in this step, then that test case is added to a set
of currently-redundant test cases, which will later be exam-
ined and from which redundant test cases may possibly be
selected for inclusion in the reduced suite. Similarly for the
secondary requirements, the algorithm needs to update its
data structures to reflect the current secondary coverage in-
formation of the reduced suite.



Function ReduceWithSelRed(T1 ... Tn, T ′

1 ... T ′

m)
Step1:Unmark allri andr′i;

redundant:= {};
maxCard := maximum cardinality of allTi’s;
curCard := 0;
for each test caset do

numUnmarked[t] := number ofTi’s containingt;
numUnmarked′[t] := number ofT ′

i ’s containingt;
endfor

Step2:loop
curCard := curCard + 1;
while there is aTi of curCard s.t.ri is unmarkeddo

list := all tests inTi’s of curCard s.t. ri is unmarked;
nextTest := SelectTest(curCard, list, maxCard);
RS := RS ∪ {nextTest};
mayReduce := FALSE;

Step3: for each Ti containingnextTest s.t. ri is unmarkeddo
Mark ri.
for each test caset in Ti do

numUnmarked[t] := numUnmarked[t] - 1;
if numUnmarked[t] == 0 AND t /∈ RS then

redundant := redundant ∪ {t};
endfor
if the cardinality ofTi == maxCard then

mayReduce := TRUE;
endfor
for each T ′

i containingnextTest s.t.r′i is unmarkeddo
Mark r′i.
for each test caset in T ′

i do
numUnmarked′[t] := numUnmarked′[t] - 1;

endfor
Step 4: initialize count[t] := 0 for all test casest.

for each test caset in redundant do
count[t] := numUnmarked′[t];

while there is at in redundant s.t.count[t] > 0 do
toAdd := anyt in redundant with max.count[t];
RS := RS ∪ {toAdd};
for each T ′

i containingtoAdd s.t. r′i is unmarkeddo
Mark r′i.
for each test caset in T ′

i do
numUnmarked′[t] := numUnmarked′[t] - 1;

endfor
initialize count[t] := 0 for all test casest.
redundant := redundant - {toAdd};
for each test caset in redundant do

count[t] := numUnmarked′[t];
endwhile
redundant := {};
if mayReduce then

maxCard := maximum cardinality among allTi

such thatri is unmarked;
endwhile

until curCard = maxCard;
end ReduceWithSelRed

Figure 3. Algorithm for reduction with selec-
tive redundancy.

Function SelectTest(size, list, maxCard)
for each test caset in list do

count[t] := number of unmarkedTi’s of
cardinalitysize containingt;

testList := test casest in list s.t. count[t] is maximum.
if the cardinality oftestList == 1 then

return the test case intestList;
else if size == maxCard then

return any test case intestList;
else

return SelectTest(size+1, testList, maxCard);
endif

end SelectTest

Figure 4. A function to select the next test
case.

Step 4: Select Redundant Test Cases. This step is where
redundancy may be added to the reduced suite. For each
test case currently known to be redundant with respect to
the primary criterion, the number of additional secondary
requirements that each test case could add to the coverage
of the reduced suite is computed. If some redundant test
case adds to the cumulative secondary requirement cover-
age of the reduced suite, then the test case adding themost
secondary requirement coverage is selected (ties are broken
arbitrarily). The additional secondary requirement coverage
of the remaining redundant test cases is recomputed, and
this process repeats until either (1) we’ve selected all there-
dundant test cases, or (2) no redundant test case adds to the
cumulative secondary coverage. At this point, the algorithm
has completed processing the current set of redundant test
cases. The main algorithm loop iterates again (back to Step
2) until all primary requirements are covered by the reduced
suite.

4 Experimental Study

4.1 Subject Programs, Faulty Versions, and Test
Case Pools

We followed an experimental set up similar to that used
by Rothermel et. al [14]. We used the Siemens programs
described in Table 3 as the subject programs. All programs,
faulty versions, and test pools used in our experiments were
assembled [2, 11, 13] by researchers from Siemens Cor-
poration. We obtained these programs, their faulty ver-
sions and the associated test pools from [10]. We exam-
ined the types of errors introduced in the faulty versions of
each subject program and identified six distinct categories
of seeded errors: (1) changing the operator in an expression,
(2) changing an operand in an expression, (3) changing the
value of a constant, (4) removing code, (5) adding code,
and (6) changing the logical behavior of the code (usually
involving a few of the other categories of error types si-
multaneously in one faulty version). Thus, the faulty ver-



sions used in our experiments cover a wide variety of fault
types. To obtain edge-coverage adequate test suites for each

Name Lines Version Description
of Code Count

tcas 138 41 altitude separation
totinfo 346 23 info accumulator
schedule 299 9 priority scheduler
schedule2 297 10 priority scheduler
printtokens 402 7 lexical analyzer
printtokens2 483 10 lexical analyzer
replace 516 32 pattern substitutor

Table 3. Siemens suite subject programs.

program, we randomly selected some number of tests cases
from the pool to add to the suite, then added any additional
test cases, so long as they increased the cumulative edge
coverage, until 100% edge-coverage was obtained. Similar
to the experimental set up in [14], the random number of
test cases we initially added to each suite varied over sizes
ranging from 0 to 0.5 times the number of lines of code
in the program. We constructed 1000 such highly redun-
dant branch coverage adequate test suites for each program.
In addition, for each subject program, we also created four
more collections of 1000 suites each, where each collection
had suite sizes ranging from 0 to 0.4, 0 to 0.3, 0 to 0.2, and 0
to 0.1 times the number of lines of code. Finally, we created
one more set of 1000 suites where we simply started with 0
test cases and then added cases as necessary (so long as each
increased the cumulative branch coverage) until 100% cov-
erage was obtained. Altogether, therefore, we created 6000
branch coverage adequate test suites for each program com-
prising 6 different size ranges corresponding to six rows for
each program shown in Table 4.

For experiments with our new reduction technique, for
each test case we also needed information about the sec-
ondary requirements covered by the test case. We chose to
useall-usescoverage information for each test case com-
puted by the ATAC tool [9] as our secondary criterion.
Thus, for each test case, we recorded all the def-use pairs
that were covered by the test case (identified as being either
computation uses or predicate uses by ATAC). Our motiva-
tion for choosing the def-use pair coverage as our secondary
criterion is that in general def-use coverage is a stronger cri-
terion than the branch coverage. Therefore, a test case that
is redundant with respect to branch coverage may not be
redundant with respect to def-use coverage. However, if a
weaker criterion such as the statement coverage is selected
as the secondary criterion, a test case that is redundant with
respect to branch coverage will also be redundant with re-
spect to statement coverage. However, as mentioned before
any other criterion that is not subsumed by the primary cri-
terion can also be used as a secondary criterion.

We implemented both the original HGS algorithm and
our test suite reduction with selective redundancy (RSR)

technique in Java. We conducted the following experiment
using the 1000 branch coverage adequate test suites gen-
erated for each of the 6 size ranges described above. We
minimizedeach of the above branch coverage adequate test
suites by applying the original HGS algorithm for remov-
ing the test cases redundant with respect to branch cover-
age. We alsoreducedthe above branch coverage adequate
suites using our technique byadding branch coverage re-
dundant test casesto the reduced suites if they contributed
additional def-use pair coverage. The results of our experi-
ments with the above techniques are respectively shown in
the columns labeled “HGSBr” (for “branch minimization”)
and “RSR” (for “reduction with selective redundancy”) in
Table 4. The table shows the results for each suite size
range for each subject program: average original suite size
(|T|), average number of faults detected by original suite
(|F|), average reduced suite size (|Tmin|), average number
of faults detected by reduced suite (|Fmin|), average per-
centage suite size reduction and average percentage fault
detection loss for each of the above techniques. The results
for the printtokens and printtokens2 programs
are respectively shown in the rows labeledprinttok and
printtok2. The values reported in the table are the av-
erages computed across all 1000 suites for each given suite
size range for each subject program. For comparison with
the above two techniques, we also applied the original HGS
algorithm to minimize the above branch coverage adequate
suites with respect to their def-use coverage. The results of
this experiment are shown in the columns labeled “HGSdu”
(for “def-use minimization”) in Table 4.

Further, to show that our new RSR technique selects the
additional redundant test cases that are effective at detecting
new faults, we conducted the following experiment: min-
imize each suite as done in HGSBr, with one difference:
when a minimized suite is computed by the HGSBr tech-
nique, we then check whether the corresponding reduced
suite computed by RSR is larger or not. If so, werandomly
add additional tests to the HGSBr-minimized suite until the
size matches that of the corresponding RSR-reduced suite.
Thus, this experiment computes minimized suites of the
same sizes as for technique RSR, but the additional tests
selected here are selected randomly, rather than by anal-
ysis of the secondary coverage information as is done by
RSR. These results are shown for the suites in suite size
range 0-0.5 for each program in Table 5. To analyze our
results, we present the boxplots1 in Figures 5 and 6. The

1The height of each box in a box plot represents the range of y-values
for the middle 50% of the values. The horizontal line within each box
represents the median value. The bottom of each box represents the lower
quartile, and the top of each box represents the upper quartile. The vertical
line stretching below each box ends at the minimum value, andrepresents
the range of the lowest 25% of the values. The vertical line stretching
above each box ends at the maximum value, and represents the range of
the highest 25% of the values. The average value is depicted by a smallx.



Program & |Tmin| |Fmin| % Size Reduction % Fault Loss
Suite Size |T| |F|
Range HGSBr RSR HGSdu HGSBr RSR HGSdu HGSBr RSR HGSdu HGSBr RSR HGSdu

tcas 0 5.71 7.47 5.00 5.16 5.02 6.78 6.92 6.80 11.34 8.87 11.02 8.18 6.39 7.87
tcas 0-0.1 9.56 9.15 5.00 6.20 5.68 6.84 7.46 7.02 41.60 30.18 35.22 22.35 16.53 20.53
tcas 0-0.2 15.20 11.73 5.00 6.94 6.08 6.73 7.83 7.07 57.66 45.54 50.90 37.07 28.56 34.21
tcas 0-0.3 21.39 14.02 5.00 7.32 6.27 6.85 8.25 7.17 66.34 55.23 60.34 44.60 35.62 42.60
tcas 0-0.4 29.07 16.29 5.00 7.71 6.48 6.80 8.56 7.24 73.09 62.95 67.47 52.09 41.79 49.50
tcas 0-0.5 35.63 17.76 5.00 7.91 6.56 6.67 8.59 7.05 76.77 67.57 71.74 56.23 46.13 54.19
totinfo 0 7.30 12.49 5.18 5.47 5.34 11.44 11.87 11.83 26.66 23.06 24.70 7.91 4.77 5.08
totinfo 0-0.1 18.68 14.62 5.11 5.96 5.30 11.44 12.63 12.47 64.58 60.04 63.26 20.31 12.85 13.85
totinfo 0-0.2 35.61 16.73 5.05 6.29 5.19 11.43 13.11 12.84 77.47 73.54 76.71 30.01 20.48 22.03
totinfo 0-0.3 52.07 17.70 5.04 6.44 5.15 11.36 13.19 13.03 82.60 79.21 82.00 34.05 24.05 25.02
totinfo 0-0.4 69.62 18.55 5.04 6.46 5.12 11.42 13.27 13.16 86.48 83.82 86.15 36.92 27.07 27.78
totinfo 0-0.5 87.73 19.16 5.02 6.46 5.09 11.34 13.15 13.16 88.96 86.62 88.68 39.42 30.15 30.21
schedule 0 7.31 3.38 5.11 5.61 5.36 2.88 3.09 2.90 28.70 21.99 25.30 13.57 7.76 13.53
schedule 0-0.1 18.44 4.58 4.99 6.03 5.47 2.89 3.25 2.98 66.77 60.77 63.81 35.05 27.16 33.08
schedule 0-0.2 32.09 5.18 4.98 6.30 5.54 2.81 3.23 2.83 77.29 72.57 75.20 44.63 36.79 44.15
schedule 0-0.3 47.91 5.61 4.86 6.45 5.55 2.91 3.33 2.80 83.29 79.12 81.40 47.39 39.81 49.01
schedule 0-0.4 58.83 5.77 4.78 6.49 5.52 2.87 3.37 2.75 85.03 81.28 83.41 49.35 40.62 51.08
schedule 0-0.5 74.94 5.96 4.74 6.61 5.56 2.88 3.27 2.67 87.91 84.51 86.35 51.18 44.46 54.31
schedule2 0 8.01 2.21 5.37 5.79 4.79 1.89 1.98 1.97 31.51 26.38 39.13 12.43 8.46 8.95
schedule2 0-0.1 18.61 2.57 5.18 6.12 4.83 1.95 2.08 2.04 66.17 60.80 68.78 20.49 15.99 16.93
schedule2 0-0.2 33.19 3.23 5.04 6.23 4.80 1.90 2.13 2.06 77.67 73.53 79.15 36.80 30.37 31.78
schedule2 0-0.3 47.44 3.77 4.94 6.38 4.81 1.89 2.15 2.10 83.29 79.74 84.22 45.07 38.27 39.30
schedule2 0-0.4 61.60 4.35 4.82 6.54 4.88 2.09 2.42 2.25 86.16 82.80 86.66 47.26 40.05 43.60
schedule2 0-0.5 76.34 4.73 4.74 6.71 4.89 2.02 2.44 2.28 88.45 85.36 88.84 51.87 43.15 46.25
printtok 0 15.76 3.38 7.12 7.63 7.44 2.90 3.03 2.98 53.69 50.39 51.61 12.36 9.19 10.32
printtok 0-0.1 27.64 3.64 7.11 7.76 7.49 2.85 3.06 3.04 71.14 68.62 69.62 19.25 14.21 14.68
printtok 0-0.2 46.03 3.96 6.93 7.75 7.38 2.87 3.11 3.05 80.26 78.26 79.12 25.00 19.53 21.04
printtok 0-0.3 63.84 4.28 6.81 7.76 7.29 2.93 3.15 3.09 83.92 82.16 82.95 28.66 24.07 25.12
printtok 0-0.4 83.44 4.54 6.70 7.80 7.26 2.89 3.19 3.11 86.89 85.27 86.01 33.40 27.36 28.97
printtok 0-0.5 101.87 4.75 6.58 7.73 7.17 2.89 3.22 3.15 88.77 87.38 88.03 36.02 29.46 30.88
printtok2 0 11.77 7.36 7.16 9.04 8.78 7.05 7.25 7.24 37.35 21.96 23.96 4.04 1.45 1.51
printtok2 0-0.1 27.56 7.80 6.78 11.79 10.05 7.08 7.49 7.45 68.39 50.02 55.55 8.90 3.82 4.23
printtok2 0-0.2 49.74 8.17 6.25 12.76 10.06 6.99 7.63 7.63 79.76 65.06 70.35 13.94 6.34 6.31
printtok2 0-0.3 75.01 8.45 5.85 13.22 9.92 7.13 7.86 7.78 86.03 73.68 78.56 15.34 6.78 7.66
printtok2 0-0.4 100.34 8.58 5.61 13.41 9.90 7.17 7.89 7.86 88.98 78.57 82.59 16.18 7.82 8.18
printtok2 0-0.5 121.73 8.60 5.49 13.51 9.88 7.13 7.94 7.84 90.19 80.71 84.43 16.72 7.52 8.62
replace 0 18.63 11.13 11.93 14.92 14.53 8.82 10.42 10.33 35.34 19.43 21.50 19.72 6.20 6.92
replace 0-0.1 34.59 14.10 11.75 17.49 15.86 9.03 12.00 11.59 61.18 44.46 48.83 33.98 13.97 16.73
replace 0-0.2 56.67 16.80 11.33 19.13 16.31 8.85 13.12 12.50 73.20 58.45 63.15 44.75 20.49 24.00
replace 0-0.3 82.49 19.01 11.09 20.54 16.70 8.83 13.82 13.06 79.77 66.84 71.45 50.93 25.54 29.25
replace 0-0.4 105.06 19.96 10.90 21.27 16.79 8.77 14.11 13.33 82.35 70.63 74.96 53.04 27.34 31.00
replace 0-0.5 134.59 21.43 10.66 22.39 16.94 8.77 14.53 13.49 86.70 76.10 80.49 56.77 30.38 35.09

Table 4. Experimental results for average percentage suite size reduction and average percentage
fault detection loss for different techniques: test suite m inimization by the HGS algorithm with
respect to branch coverage (HGSBr), test suite reduction wi th selective redundancy (RSR), and test
suite minimization by the HGS algorithm with respect to def- use pair coverage (HGSdu).

boxplots give a statistical view of the data presented in the
Table 4. Figure 5 shows the percentage suite size reduc-
tion and percentage fault detection loss of the RSR and
HGSBr-minimized suites for suite size range 0-0.5. Fig-
ure 6 shows the additional-faults-to-additional-test ratio val-
ues for those suites in suite size range 0-0.5 where the RSR-
reduced suites were larger than the corresponding HGSBr-
minimized suites. This ratio is a measure of, for each ad-
ditional test case in the RSR-reduced suite over the cor-
responding HGSBr-minimized suite, the number of addi-
tional faults detected by the RSR-reduced suite. A value of
1, for instance, would mean that for each additional test in
the RSR-reduced suite, 1 more fault is detected. A nega-
tive value may occur if the RSR-reduced suite is larger but
detects fewer faults than its HGSBr-minimized counterpart.
The ratio is computed as the number of additional faults de-
tected by the RSR-reduced suite, divided by the number of
additional tests in the RSR-reduced suite.

4.2 Analysis of Results

Reduction in Size of Branch Coverage Adequate Test
Suites: We observe from Table 4 that the average sizes of
reduced test suites with redundancy generated by RSR were
always slightly higher than the average sizes of minimized
suites generated with HGSdu, which in turn were slightly
higher than the sizes of minimized suites generated with
HGSBr. These results are as expected. Neither HGSdu nor
HGSBr attempt to retain some test cases that may be redun-
dant with respect to branch coverage or def-use coverage.
However, RSR selectively adds those test cases that provide
additional def-use coverage at the time they become redun-
dant with respect to branch coverage.

Therefore, RSR reduced suites have their test cases se-
lected in a different order than what is achieved by HGSdu.
Therefore, it is expected that the sizes of reduced test suites
generated by RSR would be larger than those generated by
HGSBr and HGSdu. The white boxes in Figure 5 also show



Program |Fmin| % Fault Loss
tcas 0-0.5 8.45 46.55
totinfo 0-0.5 11.96 36.32
schedule 0-0.5 3.26 44.60
schedule2 0-0.5 2.15 49.02
printtokens 0-0.5 2.94 35.12
printtokens2 0-0.5 7.58 11.62
replace 0-0.5 12.13 41.66

Table 5. Avg. number of faults detected and
avg. % fault detection loss when randomly
selected additional tests are added to match
the suite sizes computed by RSR technique.

that while RSR generally achieves less size reduction than
HGSBr, both RSR and HGSBr still generally achieve very
high levels of suite size reduction.
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Figure 5. The % suite size reduction (white
boxes) and % fault detection loss (gray boxes)
for the RSR and HGSBr techniques.

Fault Detection Loss of Reduced Test Suites: We ob-
serve from the Table 4 that there is a strong tendency for
RSR reduced suites to detect more faults than HGSBr and
HGSdu-minimized suites. This is expected since both RSR
and HGSdu-reduced suites retain the same all-uses cover-
age as their non-reduced counterparts, but RSR reduced
suites contain some redundancy with respect to test cases
that provide additional def-use coverage by exercising al-
ready covered branches in a different order. From our ex-
periments it appears that this form of redundancy is effec-
tive at retaining test cases that are likely to expose faults.
The gray boxes in Figure 5 also show that the fault detec-
tion losses experienced by RSR are considerably less than
that experienced by HGSBr, and overall, the fault loss val-
ues for both RSR and HGSBr are considerably less than the
corresponding suite size reduction values.

Test Suite Reduction vs. Fault Detection Loss: HGSBr
generally achieves the most suite size reduction at the ex-
pense of yielding the most fault detection loss, while RSR

-10

-8

-6

-4

-2

 0

 2

 4

 6

 8

 10

replaceprinttokens2printtokensschedule2scheduletotinfotcas

A
d
d
i
t
i
o
n
a
l
-
F
a
u
l
t
s
-
t
o
-
A
d
d
i
t
i
o
n
a
l
-
T
e
s
t
s
 
R
a
t
i
o

Subject Program

RSR vs HGSBr: Additional-Faults-to-Additional-Tests Ratio

Figure 6. The ratio of additional-faults to
additional-tests for the RSR-reduced suites
over the HGSBr-minimized suites.

generally achieves the least suite size reduction with the
benefit of yielding the least fault detection loss. HGSdu
achieves a middle-ground between RSR and HGSBr. Con-
sidering that even RSR is still able to achieve relatively high
suite size reduction, the benefit of RSR in retaining more
fault detection effectiveness in our experiments is evident.
Figure 6 shows the benefit of RSR in selecting additional
test cases that are likely to expose new faults. From the fig-
ure, notice that for every subject program, the average ratio
value is above 0. Fortcas, totinfo, printtokens2,
andreplace, the median ratio value is above 0, indicat-
ing that over half of the ratio values are greater than 0. For
schedule, schedule2, andprinttokens, although
the median value is at 0 with a lower quartile also at 0, in-
dicating that over half of the ratio values are greater than or
equal to 0, the average value is more than 0. Fortcas, the
upper quartile is over 1 (more than 25% of suites have ratio
value greater than 1), and fortotinfo, the upper quartile
is over 2 (more than 25% of suites have ratio value greater
than 2!). Forreplace, even the lower quartile is greater
than 0 (over 75% of suites have a positive ratio value).

It is reasonable to ask whether or not the increased fault
detection retention of RSR is duemerely to the fact that
the RSR-reduced suites are larger than the other minimized
suites. It turns out this is not the case. As indicated by the
results in Table 5 compared to the RSR results in Table 4,
in all cases, the average number of faults detected by the
randomly-added suites is less than the average number of
faults detected by the corresponding RSR-reduced suites.
Accordingly, the average percentage fault detection loss of
the randomly-added suites is always more than the average
fault detection loss of the RSR-reduced suites. Our exper-
imental results clearly show the potential of our new tech-
nique in selecting a small set of redundant test cases which
have a high chance of detecting new faults.

We would now like to elaborate on the following possible



points of discussion regarding our approach.

“Fault detection effectiveness loss is still very large
across all reduction techniques, even in the new approach
- the technique of test suite reduction itself is a lost cause.”
There are many factors at work which influence the fault
detection effectiveness loss of suites. For instance, the test
cases used in our experiments were selected from pools as-
sembled by Siemens researchers, and the test cases were
generated with respect to various kinds of black-box and
white-box approaches. Therefore, many of the test cases in
our suites are intentionally meant to test entities within the
subject programs that we do not know, nor that we have ac-
counted for during reduction. Therefore,anysuch test cases
could be exercising something special about the subject pro-
gram that we do not realize (such as special boundary con-
ditions or combinations of input values), and thus throwing
them away could result in fault detection loss. However, it
is quite remarkable that for all the techniques discussed in
this paper, much higher percentage suite size reduction is
achieved as compared to the corresponding percentage fault
detection loss.

“How about the cost of mapping of primary and sec-
ondary requirements to test cases?” This consideration is
important because the primary motivation for test suite re-
duction techniques is that testers may be under severe time
and resource constraints. However, note that the process
of mapping the primary and secondary requirements to test
cases is completely automated. On the other hand, the test-
ing process involves more than just executing test cases–
the outputs of test cases need to be checked for correctness,
which can often be automated only partially or done man-
ually. We believe that the potential savings on time and
resource requirements in testing of software, resulting from
the use of test suite reduction techniques for periodic main-
tenance of test suites to keep their size manageable, will
offset the cost of mapping the requirements to test cases. It
is in this context, our test suite reduction with selective re-
dundancy attempts to retain those test cases in the test suite
that are likely to expose faults.

“How does the new approach to reduction with selec-
tive redundancy differ from simply using the original HGS
algorithm to minimize the test suites with respect to both
primary and secondary criteria at the same time?” In our
approach, the test cases that become redundant with respect
to the primary criterion are checked for their additional cov-
erage with respect to the secondary criterionas soon asthey
become redundant with respect to the primary criterion. So,
the reduced suites generated by our approach have their test
cases selected in a different order than what is achieved by
minimization with respect to only the secondary criterion
or both criteria used at the same time. As a result the re-
duced test suites generated with our approach can have test
cases that are redundant not only with respect to the pri-

mary criterion but also with respect to the secondary crite-
rion because of the order in which they were added to the
reduced suite. The fundamental difference is that our new
algorithm specifically seeks toinclude redundancyin the
reduced suites while the minimization techniques seek to
eliminate as much redundancy as possible.

5 Related Work
Finding a minimal size subset of a test suite that covers

the same set of requirements as the unminimized suite is an
NP complete problem. This can be easily shown by a poly-
nomial time reduction from the the set-cover problem [6] to
the test suite minimization problem. Existing test suite min-
imization techniques are defined in terms of test case cover-
age as they attempt to minimize the size of a suite while
keeping some coverage requirement constant. A simple
greedy algorithm for the set-cover problem (and therefore
for the test suite minimization problem) is described in [4].
An algorithm [7] based on a heuristic to select a minimal
subset of test cases that covers the same set of requirements
as the unminimized suite was developed by Harold, Soffa
and Gupta. Agrawal [1] used the notion of megablocks to
derive coverage implications among the blocks to reduce
test suites such that the coverage of statements and branches
in the reduced suite implies the coverage of the rest. Sam-
path, Mihaylov, Souter and Pollock used concept analysis
[16] for incrementally creating and maintaining a reduced
test suite for web applications. Although we have imple-
mented our approach to test suite reduction with selective
redundancy by modifying the HGS algorithm, our approach
is general and can be applied to any test suite minimization
technique. A related topic is that of test case prioritization.
In contrast to test suite minimization techniques which at-
tempt to remove test cases from the suite, the test case prior-
itization techniques [5, 15, 17] only re-order the execution
of test cases within a suite with the goal of early detection
of faults.

In [18], the ATACMIN tool [9] was used to find opti-
mal solutions for minimizations of all test suites examined.
This work showed that reducing the size of test suites while
keeping all-uses coverage constant could result in little to
no loss in fault detection effectiveness. In contrast, the em-
pirical study conducted in [14] suggests that reducing test
suites can severely compromise the fault detection capabil-
ities of the suites. The work presented in [8] uses a greedy
technique for suite reduction in the context of model-based
testing. This work showed that while suite sizes could be
greatly reduced, the fault detection capability of the reduced
suites was adversely affected. A new model for test suite
minimization [3] has been developed that explicitly consid-
ers two objectives: minimizing a test suite with respect to
a particular level of coverage, while simultaneously trying
to maximize error detection rates with respect to one par-
ticular fault. A limitation of this model is that fault detec-



tion information is considered with respect to a single fault
(rather than a collection of faults), and therefore there may
be limited confidence that the reduced suite will be useful
in detecting a variety of other faults. Techniques for test
suite minimization that are specifically tailored to consider
the complexity of the modified condition/decision cover-
age criterion have been developed in [12]. Experimental
results in [12] showed that while suite size reduction could
be substantial for both reduction techniques, the fault detec-
tion loss of suites reduced under these two techniques may
vary greatly depending upon the particular program and test
suites used.

Suite size and fault detection effectiveness are opposing
forces in the sense that more suite size reduction would in-
tuitively imply more fault detection effectiveness loss, since
throwing away more test cases, in effect, throws away more
opportunities for detecting faults. Thus, there seems to be
an inherent tradeoff involved in test suite reduction: one
may choose to sacrifice some suite size reduction in order
to increase the chances of retaining more fault detection ef-
fectiveness. Our experimental results suggest that our new
algorithm may provide a framework for testers to have more
flexibility in determining the conditions of this tradeoff.

6 Conclusions and Future Work
We have presented a new approach to test suite reduction

that attempts to selectively keep redundant test cases with
the goal of decreasing the loss of fault detection effective-
ness due to reduction in suite size. Our approach is general
and can be integrated into any existing test suite minimiza-
tion algorithm. In our experimental study, our approach
consistently performed better than test suite minimization
without redundancy by generating reduced test suites with
less fault detection loss at the expense of a small increase
in the size of the reduced suite. In the near future, we plan
to evaluate the effectiveness of our technique for test suite
reduction with selective redundancy for a combination of
white-box and black-box coverage requirements.
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