Test Suite Reduction with Selective Redundancy

Dennis Jeffrey Neelam Gupta
Department of Computer Science Department of Computer Science
The University of Arizona The University of Arizona
Tucson, AZ 85721 Tucson, AZ 85721
jeffreyd@cs.arizona.edu ngupta@cs.arizona.edu
Abstract loss in fault detection effectiveness. However, the empir-

ical study conducted in [14] suggests that minimized test

Software testing is a critical part of software develop- Ssuites can severely compromise the fault detection capabil
ment. Test suite sizes may grow significantly with subse-ities of the test suites. There are two implications of this
guent modifications to the software over time. Due to time conflict: first, there are situations where minimization can
and resource constraints for testing, test suite minimiza- achieve high suite size reduction without significantly de-
tion techniques attempt to remove those test cases from thereasing fault detection effectiveness; second, theralsoe
test suite that have become redundant over time since thesituations where minimization can achieve high suite size
requirements covered by them are also covered by otherreduction at the expense of significant loss in fault detec-
test cases in the test suite. Prior work has shown that tion effectiveness.
test suite minimization techniques can severely compemis Intuitively, any time a test case is thrown away from a
the fault detection effectiveness of test suites. In this pa suite, the suite loses an opportunity for detecting fallést
per, we present a novel approach to test suite reduction thatsuite reduction, therefore, ultimately involves a tradibef
attempts to selectively keep redundant tests in the reducedween the suite’s size and fault detection effectiveneks. T
suites. We implemented our technique by modifying an exfocus of the approach for test suite reduction developed in
isting heuristic for test suite minimization. Our experitt® this paper is to achieve high suite size reduction while si-
show that our approach can significantly improve the fault multaneously allowing for low fault detection effectivesse
detection effectiveness of reduced suites without senvarel loss. The intuition driving our current work is that when a
fecting the extent of test suite size reduction. non-reduced suite contains lots of redundancy with respect
to a coverage criterion, it may be helpful to selectivelykee
. some of that redundancy in the reduced test suite so as to re-
1 Introduction tain more fault detection effectiveness in the reducecasuit

Software testing and retesting occurs continuously duringhopefully without significantly affecting the amount of &ui
the software development lifecycle. As software grows and Size reduction. Theest suite minimizatioproblem [7] can
evolves, so too do the accompanying test suites. Over time pe stated as follows.

some test cases in a test suite may become redundant as thgjyen: A test suiteT’, a set of testing requirements,
requirements executed by them are also executed by othey, ..., 1 that must be satisfied to provide the desired test
test cases in the test suite. Due to time and resource congoyerage of the program, and subsgfs, To, - - -, T, } of

straints for re-testing the software every time itis modifie 7 one associated with each of th¢s such that any one of
it is important to develop techniques that keep the tesesuit ihe test casess belonging taT} coversr;.

size manageable by removing those test cases that may have

become redundant with respect to the coverage of progrant roblem: Find aminimal cardinalitysubset off” that exer-
requirements. cises allr;'s exercised by the unminimized test suite

Since test suite minimization removes test cases, mini-For example, the desired coverage of the program may be a
mized suites may be weaker at detecting faults in softwareset of test cases that cover all edges in the control flow graph
than their unminimized counterparts. Previous work on test of the program. The test suite minimization problem then is:
suite minimization has shown some conflicting results. In given a test suite satisfying the all-edges adequacy ioniter
[18], it was shown that minimizing test suites while keep- find a minimal cardinality subset of the test suite that cever
ing all-uses coverage constant could result in little to no all edges in the program. The existing techniques for test

suite minimization do not consider keeping any redundancy mized suite and mark the requirements covered by the
with respect to the given coverage criterion during theesuit selected test cases.
minimization process.

Any test suite minimization algorithm addressing the
above problem can be modified to incorporate our approach
to generate reduced test suites that selectively retaire som
of the test cases that are redundant with respect to the given
coverage criterion. An algorithm based on a heuristic (re-
ferred to as the HGS algorithm from here onwards) to select
a representative set of test cases from a test suite, pngvidi
the same coverage as the entire test suite, was developed
by Harrold, Gupta and Soffa [7]. In this paper, we specifi-
cally consider this algorithm for test suite minimizatiorda
modify it to implement our approach for test suite reduction
with selective redundancy. We present the results of our ex-
periments to evaluate the effectiveness of our approach in
generating better quality (in terms of their fault detectio
capability) reduced suites for the Siemens suite programs

[2, 11, 13]. The main contributions of this paper are as fol- 4, Repeat the above step until all testing requirements are

3. Consider the unmarked requirements in increasing or-
der of the cardinality of the set of test cases exercising
a requirement. If several requirements are tied since
the sets of test cases exercising them have the same car-
dinality, select the test case that would mark the high-
est number of unmarked requirements tied for this car-
dinality. If multiple such test cases are tied, break the
tie in favor of the test case that would mark the high-
est number of requirements with testing sets of suc-
cessively higher cardinalities; if the highest cardiralit
is reached and some test cases are still tied, arbitrarily
select a test case among those tied. Mark the require-
ments exercised by the selected test. Remove test cases
that become redundant as they no longer cover any of
the unmarked requirements.

lows: marked.
e A novel yet simple approach to test suite reduction We first illustrate how the HGS algorithm will generate a
with selective redundancy. minimized test suite that covers all the branches of the ex-

Uit s
e Our experimental results clearly show the potential of Elmple program Iln F|gbure 1HBB;a_ndB'1 IS egeculteg only
our new technique in selecting a small set of redundantPY 1St casé.. Also, branchi3,” is executed only by test

test cases which have a high chance of detecting newt@S€2. Therefore, test casésandt, are added to the min-
faults imized suite and the branches covered by these test cases,

_ _ _ BT, B.F, B;T, BoT, B3T, B3¥ and B4*, are marked.
The remainder of the paper is organized as follows. In the This makes test casy redundant since all the branches
next section, we motivate our approach with an example. -gyered byt; are marked. Now only brancB,7 is un-
Our algorithm for test suite reduction with selective redun o ked. Therefore eithes or ¢5 can be selected to cover
dancy is described in section 3. In section 4, we presentang, T since the tie in this case is broken arbitrarily, dt
experimental study comparing an existing test suite mini- e selected for adding to the minimized suite. Thus, the
mization technique with our modified version that takes re- inimized branch coverage suite generated by the HGS al-
dundancy into account. In section 5, we discuss the relatedgorithm for this example i1, 2, t4}. Now, test cases is
work. We present the conclusions and our future work in jgentified as redundant and the algorithm terminates since
section 6. all the branches are marked. Note that unselected test case
2 A Motivational Example t3 - identified as redundant for branch coverage - exposes a

)) divide-by-zero error in this example.
We now present a simple example program to motivate our Now we illustrate our approach for generating a reduced

idea of.selectlvely keeping redundanttle_st casesina rd_ducebranch coverage adequate test suite by selectively keeping
test suite generated by a test suite minimization algorithm g, 6 requndant test cases in the reduced suite. Let us col-
Tge example progtrﬁam_ahnd a correjpo(r;dmg branch cove_rﬁgrf-ect the coverage information for a secondary criterionhsu
adequate test suite with some redundant test cases With 55 ¢ 5| def-use pairs criterion, for all the test casehén t

respect to branch coverage are shown in Figure 1. _test suitel” for the example program in Figure 1. This in-
The branches covered by each test case are marked W'ttﬁormation is shown in Table 2. Our approach isriod-

aInX n the resfpectlve columrr:s in Table ,1' Slgce our Imh ify the step that identifies redundant test casethe test
plementation of our approach to test suite reduction With g i minimization algorithm. Specifically, when the HGS

selective redundancy is based on the HGS test suite mlnl'algorithm identifies a test case as redundant since all the

mization algori_thm [7], we next briefly present the steps of branches covered by this test case have been marked, we
the HGS algorithm.) check if this test case is also redundant with respect to the
1. Initially, all requirements are unmarked. secondary criterion. If this is the case, we identify the tes
2. For each requirement that is exercised by only one testcase as redundant. Otherwise, we add the test case to the
case each, add each of these test cases to the minireduced test suite.

In this example, aftet; andt¢, are added to the reduced x(4,6), x(4,8) andd(1, By) which are respectively exe-
suite by the HGS algorithmis is identified as redundant cuted by 2, 2 and 3 test cases. In the next step, we consider
with respect to branch coverage since all the branches covthe requirements(4, 6) andxz(4, 8) since each of these is
ered byt; are already covered by andt¢,. However, we executed by test sets of cardinality 2. We now selectitest
now check ifts is also redundant with respect to the sec- since it executes both(4,6) andx(4,8). At this point all
ondary criterion. In this case we find that covers the the secondary requirements are marked and the HGS algo-
def-use pairz(4, 6) that is not covered by eitheg or t,. rithm terminates with the minimized test suita, t4}.
Therefore, we do not identifys as redundant and we add it Note that this minimized test suite is not branch cover-
to the reduced test suite. Thus, in our approach the reducedge adequate since it does not cover the brash Nor
test suite at this point contairis, ¢», and¢s. Now, either does it expose the divide-by-zero error at line 13. This ex-
one oft, or t5 can be chosen next to cover the bradgh. ample points out that some branches suctB§sthat do
Letts be added to the reduced test suite. Thus, the requirenot define or use a variable may not be covered if the min-
ment BY also gets marked. At this point the test case imized test suite with respect to the secondary criterion is
becomes redundant with respect to branch coverage as weljenerated. Note that if we applied the HGS algorithm to
as with respect to the coverage of the secondary criterion.generate a minimized suite without redundancy for both the
Therefore, the reduced test suite generated by our approachranch coverage and the coverage of the secondary crite-
for this example is{t, t2, t3, t+}. Note that this reduced rion simultaneously, then the same minimized syitg ¢,
test suite will expose the divide-by-zero error atline 13. ¢} as generated in minimizing with respect to the branch

1 read(ab.c.d); coverage would pe generated. In th_is case again, the divide-
By: if(a>0) by-zero error at line 13 would be missed.
2 X=2; A Branch Coverage adequate Sdite Therefore, the above example suggests that our approach
3 else to test suite reduction with retaining selective redunganc
4: x=5; ti:(@a=1,b= 1c—-1d 0) . . .
5 endif to:(@a=-1,b=-1,c=1,d=-1) in the reduced test suite may be preferable to either of the
By: if (b >0) t3: (@a=-1, b= 1 c=-1,d=0) non-redundancy minimization approaches. The above ex-
6: y=1+x ta:(@=-1,b= 1 c=1,d=1) ample also provides insight into why this is so. The def-use
23: i‘fer(‘i'; 0 ti@=-1b=-"1c=1d=1 pair (4, 6) is exercised by both; andt,. The test case;
Ba: if (d > 0) exercises a combination of branch outcomes not executed
8: output(x); by the other test cases and this combination of branch out-
51’30_ e'seout LH(10); comes exposes the divide-by-zero error. However, in both
11 endif p ’ of the above test suite minimization schemes without redun-
12 else dancy,ts becomes redundant due to the other test cases that
13: output(1/(y-6)); are added to the minimized test suite early on in the mini-
14: endif mization algorithm. However, in our approach as soon as a
Figure 1. An example program with a branch test case becomes redundar_n apc_ording to branch coverage,
coverage adequate test suite 7. we add it to the reduged suite if it adds new def-use pair
coverage. Therefore, it allows to be added to the reduced
suite before, is added to the test suite.
Zzssté Bl | B | By | By | BS | By | Bi | B Thus, while our reduction with redundancy approach
achieves slightly less suite size reduction, it is alsolyike
t: | X X X) . S
e < < < < to retain test cases that execute different combinations of
Ta: X X X branch outcomes than those covered by the test cases al-
ts: X X X X ready in the minimized suite, even though these test cases
t5: X X | X X have become redundant with respect to branch coverage.
Table 1. Branch coverage information for test Thus, we see that there is something significant that may
casesin T. be gained by approaching the test suite reduction problem

with the goal ofadding somgrather than simply removing

For comparison with our approach explained above, let us
P bp P all, redundancy.

apply the HGS algorithm directly to Table 2 to compute
a minimized suite with respect to the secondary criterion 3 Test Suite Reduction With Sdective Re-
without retaining redundancy. Test casewill be added to

the minimized suite since it covers the def-use pé#, 6) dundancy

that is executed only by,. Sincet; also covergy(6,13), Our proposed approach to test suite reduction is based on
a(l, By), b(1,Bs) and ¢(1, Bs), these def-use pairs get the following key observation. Test suite minimizationtec
marked. Now only 3 def-use pairs are unmarked, namelyniques attempt to throw away test cases that are redun-

test case| x(2,6) | x(4,6) | x(4,8) | y(6,13) [a(1,B1) | b(1,B2) [c(1,B3) [d(1,Bs) |

t1: X X X X X
ta: X X X X
t3: X X X X X
ta: X X X X X X
ts: X X X X X

Table 2. Definition-use pair coverage information for test ¢ asesin T.

dant with respect to the coverage criterion for minimiza- requirement;. Similarly, Ty, T4, ..., T/, are the testing sets
tion. However, in the absence of an ideal coverage crite- corresponding to secondary requirements suchithabn-

rion, throwing away test cases can result in significant losstains the set of test cases that cover the secondary require-
of fault detection capability [14]. Therefore, we beliehat mentr;. Now we describe the steps in the main algorithm
the test suite reduction problem should be viewed from thein Figure 3.

perspective of keeping redundant test cases that may exer-

cise different situations in program execution even though Step 1: Initialization. This step simply initializes the vari-
they are redundant with respect to the coverage criterion fo ables and data structures that will be maintained throughou
test suite minimization. For making a distinction between the execution of the algorithm. After initialization, theain

the primary coverage criterion used for test suite reductio program loop begins which attempts to select test cases that
and additional requirements whose coverage determines if a&cover the primary requirements that are currently uncalere
redundanttest case should be added to the reduced suite, way the reduced suite (initially empty). The uncovered pri-
respectively refer to them @simaryandsecondargriteria. mary requirements are considered in increasing order of as-
Our approach is very general and even some requirementsociated testing set cardinality.

derived from black-box testing could be used as secondary _ _
requirements in conjunction with the statement or branch StéP 2 Select the Next Test Case According to the Pri-
coverage criteria that may be used as a primary criterion inMary Requirement. The algorithm first collects together
this approach. all the test cases comprising the testing sets of the current

We developed a specific implementation of our test suite cardinality that are associated with uncovered primary re-

reduction with redundancy algorithm by adding a new step quirements._This is the pool frqm which the next sele_cted
to the HGS heuristic algorithm [7]. Instead of throwing test case (with respect to the primary requirements) will be

away test cases that are redundant with respect to the pri_selec:ted. The algorithm next decides which of the tests in

mary requirement coverage criterion for test suite mini- the pool to select by giving prefgrence o the test case that
mization in the original HGS algorithm, our new step exam- covers the most uncovered requirements whose testing sets

ines the redundant test cases with respect to the coverage Oarre_of the curr_ent ca_rdlnallty. In the event of a tie, the al-
some additional secondary requirements and uses this inforgomhm recursively gives preference to the test case among

mation to decide whether to add the test case to the reducque tied elements.that covers the most u.ncover.ed require-
suite. Figures 2, 3 and 4 show our implementation of our ments whose testing sets are of successively higher cardi-

approach based on the HGS test suite minimization algo_naIities. If the cardinality reaches the maximum cardigali
rithm and there are still ties, an arbitrary test case is seleoted f
' among the ties. The selected test case is then added to the

Set of primary testing requirements;, rz, ...,7n. reduced suite.
Set of secondary requirements;, 5, ..., 7,.

Test cases in unreduced test suiteito, ..., tn:. Step 3: Mark Newly-Covered Requirementsand Update

Input: T1, Ts, ..., T test sets fory, ra, ..., respectively. Coverage Information. At this point, we have added a
T}, T}, ..., T, test sets for),, rb, ...,rl, respectively. new test case to the reduced suite. This test case covers
Output: RS: a reduced subset tof ¢z, ..., tn: certain primary requirements, so the algorithm updates its

data structures to reflect the current primary coverage-info
mation of the reduced suite. Additionally, if any test case i
The input and output of our algorithm are shown above in discovered to become redundant with respect to the primary
Figure 2. The main algorithm for test suite reduction with requirements in this step, then that test case is added to a se
selective redundancy is shown in Figure 3, and Figure 4 of currently-redundant test cases, which will later be exam
shows a functiorSelectTestshat is used by the main al- ined and from which redundant test cases may possibly be
gorithm. As shown in Figure 2, our algorithm takes as input selected for inclusion in the reduced suite. Similarly foe t

two collections of associated testing séfs, 15, ...,T;, are secondary requirements, the algorithm needs to update its
the testing sets corresponding to primary requirements suc data structures to reflect the current secondary coverage in
thatT; contains the set of test cases that cover the primaryformation of the reduced suite.

Figure 2. Input/output for our algorithm.

Function ReduceWithSelRedy ... Ty, 75 ... T},
Stepl: Unmark allr; andr;;
redundant:= {};
maxzCard = maximum cardinality of alll;'s;
curCard :=0;
for each test case do
numUnmarked[t] := number ofT;’s containingt;
numUnmarked’[t] :== number ofT}’s containingt;
endfor
Step2: loop
curCard :=curCard + 1;
whilethere is &’; of curCard s.t.r; is unmarkeddo
list := all tests inT;’s of curCard s.t.r; is unmarked,;
nextTest = SelectTesturCard, list, maxCard);
RS := RS U {nextTest};
mayReduce := FALSE;
for each T; containingnextTest S.t.r; is unmarkedlo
Mark r;.
for each test case in T; do
numUnmarked[t] := numUnmarked[t] - 1;
if numUnmarked[t] == 0 AND ¢ ¢ RS then
redundant := redundant U {t};
endfor
if the cardinality ofl; == maxCard then
mayReduce := TRUE;
endfor
for each T/ containingnextTest s.t.r; is unmarkeddo
Mark ;.
for each test case in T} do
numUnmarked'[t] := numUnmarked'[t] - 1;
endfor
initialize count[t] := O for all test cases.
for each test case in redundant do
count[t] := numUnmarked'[t],
whilethere is & in redundant s.t. count[t] > 0do
toAdd := anyt in redundant with max. count|t];
RS := RS U {toAdd};
for each T/ containingtoAdd s.t. 7} is unmarkedio
Mark ;.
for each test casé in 7} do
numUnmarked'[t] := numUnmarked'[t] - 1;
endfor
initialize count][t] := 0 for all test cases.
redundant := redundant - {toAdd};
for each test case in redundant do
count[t] := numUnmarked'[t],
endwhile
redundant :={};
if mayReduce then
maxCard := maximum cardinality among &ff;
such that-; is unmarked,;
endwhile
until curCard = maxCard;
end ReduceWithSelRed

Step3:

Step 4:

Figure 3. Algorithm for reduction with selec-
tive redundancy.

Function SelectTest{ize, list, maxCard)
for each test case in list do
count[t] := number of unmarked’;’s of
cardinalitysize containingt;
testList ;= test casesin list S.t. count[t] is maximum.
if the cardinality oftest List == 1then
return the test case itestList;
eseif size == maxCard then
return any test case irestList;
else
return SelectTest{ize+1, test List, maxCard);
endif
end SelectTest

Figure 4. A function to select the next test
case.

Step 4: Select Redundant Test Cases. This step is where
redundancy may be added to the reduced suite. For each
test case currently known to be redundant with respect to
the primary criterion, the number of additional secondary
requirements that each test case could add to the coverage
of the reduced suite is computed. If some redundant test
case adds to the cumulative secondary requirement cover-
age of the reduced suite, then the test case addingtise
secondary requirement coverage is selected (ties arerbroke
arbitrarily). The additional secondary requirement cager

of the remaining redundant test cases is recomputed, and
this process repeats until either (1) we've selected alleéhe
dundant test cases, or (2) no redundant test case adds to the
cumulative secondary coverage. At this point, the algorith
has completed processing the current set of redundant test
cases. The main algorithm loop iterates again (back to Step
2) until all primary requirements are covered by the reduced
suite.

4 Experimental Study

4.1 Subject Programs, Faulty Versions, and Test
Case Pools

We followed an experimental set up similar to that used
by Rothermel et. al [14]. We used the Siemens programs
described in Table 3 as the subject programs. All programs,
faulty versions, and test pools used in our experiments were
assembled [2, 11, 13] by researchers from Siemens Cor-
poration. We obtained these programs, their faulty ver-
sions and the associated test pools from [10]. We exam-
ined the types of errors introduced in the faulty versions of
each subject program and identified six distinct categories
of seeded errors: (1) changing the operator in an expression
(2) changing an operand in an expression, (3) changing the
value of a constant, (4) removing code, (5) adding code,
and (6) changing the logical behavior of the code (usually
involving a few of the other categories of error types si-
multaneously in one faulty version). Thus, the faulty ver-

sions used in our experiments cover a wide variety of fault technique in Java. We conducted the following experiment
types. To obtain edge-coverage adequate test suites tor eacusing the 1000 branch coverage adequate test suites gen-
erated for each of the 6 size ranges described above. We

Name '—if“gsd \C/efSifz“ Description minimizedeach of the above branch coverage adequate test
or Coae oun . . .l -
T 198 a1 alfitude separafion §U|tes by applying the original HGS algorithm for remov-
totinfo 346 23 info accumulator ing the test cases redundant with respect to branch cover-
schedule 299 9 priority scheduler age. We alsweducedthe above branch coverage adequate
schedule2 | 297 10 priority scheduler suites using our technique fadding branch coverage re-
printtokens | 402 ! lexical analyzer dundant test cases the reduced suites if they contributed
printtokens2 | 483 10 lexical analyzer . . Yy .
replace 516 32 pattern substitutor additional def-use pair coverage. The results of our experi
ments with the above techniques are respectively shown in
Table 3. Siemens suite subject programs. the columns labeled “HGSBr” (for “branch minimization”)

and “RSR” (for “reduction with selective redundancy”) in

f h | dd to th ite. th dded qditi I%able 4. The table shows the results for each suite size
rom the pool to add to the suite, then added any additiona range for each subject program: average original suite size

test cases, S0 Iongo as they increased the cumulatlvg e.dgﬂTl), average number of faults detected by original suite
coverage, ur_ml 100% edge—poverage was obtained. S|m|Iar(|F|), average reduced suite siz&rin|), average number

o the expenm_er_ﬁal set up in [14], the Ta”do'_“ number_ of of faults detected by reduced suit€rhin|), average per-
test cases we initially added to each suite varied over S'Zescentage suite size reduction and average percentage fault

ranging from 0 to 0.5 times the number of Iin_es of code detection loss for each of the above techniques. The results
in the program. We constructed 1000 such highly redun-]cor the pri ntt okens and printt okens2 programs

dant bra_mch coverage ad_equate test suites for each progran, respectively shown in the rows labefad nt t ok and
In addition, for each subject program, we also created fourpr i ntt ok2. The values reported in the table are the av-

Emdre c_olle(_:tlons of ;OO? sungs eg(;h,owh%rz e(?Chg(;”eCt:jogerages computed across all 1000 suites for each given suite
ad suite sizes ranging from 010 0.4, 010 0.3,010 0.2, and O, o range for each subject program. For comparison with

to 0.1 times the number(_)f lines of code. .F|nally, we cregted the above two techniques, we also applied the original HGS
one more set of 1000 suites where we simply started with 0aI orithm to minimize the above branch coverage adequate
test cases and then added cases as necessary (so long as ®dfites with respect to their def-use coverage. The restilts o

increased the cumulative branch coverage) until 100% COV-ihis experiment are shown in the columns labeled *“HGSdu”

erage was obtained. Altogether, therefore, we created 600 for “def-use minimization”) in Table 4.

branch coverage adequate test suites for each program com- Further, to show that our new RSR technique selects the

prising 6 different size ranges corresponding to six rows fo additional redundant test cases that are effective attilegec

each program shown in Table 4. : . R
. . : : new faults, we conducted the following experiment: min-
For experiments with our new reduction technique, for . " i . . i]
imize each suite as done in HGSBr, with one difference:

each test case we also needed information about the sec- L o
: when a minimized suite is computed by the HGSBr tech-
ondary requirements covered by the test case. We chose tQ.

; X nigue, we then check whether the corresponding reduced
useall-usescoverage information for each test case com-

o suite computed by RSR is larger or not. If so, lmadomly
.r:_l;Lesd f?; ég?:hAtLAsch)soel [\?v]e a:zcgl:éesde;ﬁr;g:rgei_rgggogir Sadd additional tests to the HGSBr-minimized suite until the
' ' X o US€ Palryi; e matches that of the corresponding RSR-reduced suite.
that were covered by the test case (identified as being e|thet|_hus this experiment computes minimized suites of the
computation uses or predicate uses by ATAC). Our motiva- '

. : . same sizes as for technique RSR, but the additional tests
tion for choosing the def-use pair coverage as our secondary

L ; . . selected here are selected randomly, rather than by anal-
criterion is that in general def-use coverage is a stronger ¢

X sis of the secondary coverage information as is done by
terion than the branch coverage. Therefore, a test case th

. : SR. These results are shown for the suites in suite size
is redundant with respect to branch coverage may not be .
. .. _range 0-0.5 for each program in Table 5. To analyze our
redundant with respect to def-use coverage. However, if a -
o . aesults, we present the boxplbis Figures 5 and 6. The
weaker criterion such as the statement coverage is selecte
as the secondary criterion, a test case that is redundant wit — , .

b h ill also be redundant with re- The height of each box in a box plot represents the range afyes
respect to branch coverage will a ¢ for the middle 50% of the values. The horizontal line withiack box
spect to statement coverage. However, as mentioned beforepresents the median value. The bottom of each box reftsetseriower
any other criterion that is not subsumed by the primary cri- quartile, and the top of each box represents the upper kuartie vertical
terion can also be used as a Secondary criterion. line stretching below each box ends at the minimum vglue,r_eptbsgnts

. .. . the range of the lowest 25% of the values. The vertical limetating
We implemented both the original HGS algorithm and apove each box ends at the maximum value, and representarie of

our test suite reduction with selective redundancy (RSR) the highest 25% of the values. The average value is depigtedsmallz.

program, we randomly selected some number of tests case

Program & | Tmin| [Fmin]| % Size Reduction % Fault Loss

Suite Size IT| |F|

Range HGSBr ‘ RSR | HGSdu ‘ HGSBr ‘ RSR ‘ HGSdu || HGSBr ‘ RSR | HGSdu ‘ HGSBr | RSR ‘ HGSdu
tcas 0 571 7.47 5.00 5.16 5.02 6.78 6.92 6.80 11.34 8.87 11.02 8.18 6.39 7.87
tcas 0-0.1 9.56 9.15 5.00 6.20 5.68 6.84 7.46 7.02 41.60 30.18 35.22 22.35 16.53 20.53
tcas 0-0.2 15.20 | 11.73 5.00 6.94 6.08 6.73 7.83 7.07 57.66 45.54 50.90 37.07 28.56 34.21
tcas 0-0.3 21.39 | 14.02 5.00 7.32 6.27 6.85 8.25 7.17 66.34 | 55.23 | 60.34 4460 | 35.62 | 42.60
tcas 0-0.4 29.07 | 16.29 5.00 7.71 6.48 6.80 8.56 7.24 73.09 | 62.95 | 67.47 52.09 | 41.79 | 49.50
tcas 0-0.5 35.63 | 17.76 5.00 7.91 6.56 6.67 8.59 7.05 76.77 | 6757 | 7174 56.23 | 46.13 | 54.19
totinfo 0 730 | 12.49 5.18 5.47 5.34 1144 | 11.87 | 11.83 26.66 | 23.06 | 24.70 7.91 477 5.08
totinfo 0-0.1 18.68 | 14.62 5.11 5.96 5.30 11.44 12.63 12.47 64.58 60.04 63.26 20.31 12.85 13.85
totinfo 0-0.2 35.61 | 16.73 5.05 6.29 5.19 11.43 13.11 12.84 77.47 73.54 76.71 30.01 20.48 22.03
totinfo 0-0.3 52.07 | 17.70 5.04 6.44 5.15 11.36 13.19 13.03 82.60 79.21 82.00 34.05 24.05 25.02
totinfo 0-0.4 69.62 | 18.55 5.04 6.46 5.12 1142 | 13.27 | 13.16 86.48 | 83.82 | 86.15 36.92 | 27.07 | 27.78
totinfo 0-0.5 87.73 | 19.16 5.02 6.46 5.09 11.34 | 13.15| 13.16 88.96 | 86.62 | 88.68 39.42 | 30.15| 30.21
schedule 0 7.31 3.38 511 5.61 5.36 2.88 3.09 2.90 28.70 | 21.99 [25.30 13.57 7.76 13.53
schedule 0-0.1 | 18.44 | 4.58 4.99 6.03 5.47 2.89 3.25 2.98 66.77 | 60.77 | 63.81 35.05 | 27.16 | 33.08
schedule 0-0.2 32.09 5.18 4.98 6.30 5.54 2.81 3.23 2.83 77.29 72.57 75.20 44.63 36.79 44.15
schedule 0-0.3 47.91 5.61 4.86 6.45 5.55 291 3.33 2.80 83.29 79.12 81.40 47.39 39.81 49.01
schedule 0-0.4 | 58.83 | 5.77 4.78 6.49 5.52 2.87 3.37 2.75 85.03 | 81.28 | 83.41 49.35 | 40.62 | 51.08
schedule 0-0.5 | 74.94 | 5.96 4.74 6.61 5.56 2.88 3.27 2.67 87.91 | 84.51 | 86.35 51.18 | 44.46 | 54.31
schedule2 0 8.01 2.21 5.37 5.79 4.79 1.89 1.98 1.97 3151 | 26.38 | 39.13 12.43 8.46 8.95
schedule2 0-0.1| 18.61 | 2.57 5.18 6.12 4.83 1.95 2.08 2.04 66.17 | 60.80 | 68.78 20.49 | 1599 | 16.93
schedule2 0-0.2| 33.19 3.23 5.04 6.23 4.80 1.90 2.13 2.06 77.67 73.53 79.15 36.80 30.37 31.78
schedule2 0-0.3| 47.44 3.77 4.94 6.38 4.81 1.89 2.15 2.10 83.29 79.74 84.22 45.07 38.27 39.30
schedule2 0-0.4| 61.60 4.35 4.82 6.54 4.88 2.09 2.42 2.25 86.16 82.80 86.66 47.26 40.05 43.60
schedule2 0-0.5| 76.34 | 4.73 4.74 6.71 4.89 2.02 2.44 2.28 88.45 | 85.36 | 88.84 51.87 | 43.15 | 46.25
printtok O 15.76 | 3.38 7.12 7.63 7.44 2.90 3.03 2.98 53.69 | 50.39 [51.61 12.36 9.19 10.32
printtok 0-0.1 27.64 | 3.64 7.11 7.76 7.49 2.85 3.06 3.04 71.14 | 68.62 | 69.62 19.25 | 14.21 | 14.68
printtok 0-0.2 46.03 | 3.96 6.93 7.75 7.38 2.87 3.11 3.05 80.26 | 78.26 | 79.12 25.00 | 19.53 | 21.04
printtok 0-0.3 63.84 4.28 6.81 7.76 7.29 2.93 3.15 3.09 83.92 82.16 82.95 28.66 24.07 25.12
printtok 0-0.4 83.44 4.54 6.70 7.80 7.26 2.89 3.19 3.11 86.89 85.27 86.01 33.40 27.36 28.97
printtok 0-0.5 101.87 | 4.75 6.58 7.73 7.17 2.89 3.22 3.15 88.77 | 87.38 | 88.03 36.02 | 29.46 | 30.88
printtok2 0 11.77 7.36 7.16 9.04 8.78 7.05 7.25 7.24 37.35 21.96 23.96 4.04 1.45 151
printtok2 0-0.1 | 27.56 | 7.80 6.78 11.79 | 10.05 7.08 7.49 7.45 68.39 | 50.02 | 55.55 8.90 3.82 4.23
printtok2 0-0.2 | 49.74 | 8.17 6.25 12.76 | 10.06 6.99 7.63 7.63 79.76 | 65.06 | 70.35 13.94 6.34 6.31
printtok2 0-0.3 75.01 8.45 5.85 13.22 9.92 7.13 7.86 7.78 86.03 73.68 78.56 15.34 6.78 7.66
printtok2 0-0.4 | 100.34 | 8.58 5.61 13.41 9.90 7.17 7.89 7.86 88.98 78.57 82.59 16.18 7.82 8.18
printtok2 0-0.5 | 121.73 | 8.60 5.49 13.51 9.88 7.13 7.94 7.84 90.19 | 80.71 | 84.43 16.72 7.52 8.62
replace 0 18.63 | 11.13 11.93 14.92 14.53 8.82 10.42 10.33 35.34 19.43 21.50 19.72 6.20 6.92
replace 0-0.1 3459 | 14.10 11.75 | 17.49 | 15.86 9.03 12.00 | 11.59 61.18 | 44.46 | 48.83 33.98 | 13.97 | 16.73
replace 0-0.2 56.67 | 16.80 11.33 | 19.13 | 16.31 8.85 13.12 | 1250 73.20 | 58.45 | 63.15 4475 | 20.49 | 24.00
replace 0-0.3 82.49 | 19.01 11.09 20.54 16.70 8.83 13.82 13.06 79.77 66.84 71.45 50.93 25.54 29.25
replace 0-0.4 105.06 | 19.96 10.90 21.27 16.79 8.77 14.11 13.33 82.35 70.63 74.96 53.04 27.34 31.00
replace 0-0.5 13459 | 21.43 10.66 22.39 16.94 8.77 14.53 13.49 86.70 76.10 80.49 56.77 30.38 35.09

Table 4. Experimental results for average percentage suite size reduction and average percentage

fault detection loss for different techniques: test suite m inimization by the HGS algorithm with
respect to branch coverage (HGSBr), test suite reduction wi th selective redundancy (RSR), and test
suite minimization by the HGS algorithm with respect to def- use pair coverage (HGSdu).

boxplots give a statistical view of the data presented in the4.2 Analysis of Results

Table 4. Figure 5 shows the percentage suite size reduc- L

tion and percentage fault detection loss of the RSR andRe.dUCtlon in Size of Branch Coverage Adequate qut
HGSBr-minimized suites for suite size range 0-0.5. Fig- Suites: We obsgrve f_rom Table 4 that the average sizes of
ure 6 shows the additional-faults-to-additional-tegoreal- reduced test suites with redundancy generated by RSR were

ues for those suites in suite size range 0-0.5 where the RSR&Ways slightly higher than the average sizes of minimized

reduced suites were larger than the corresponding HGSBr-SUites generated with HGSdu, which in turn were slightly

minimized suites. This ratio is a measure of, for each ad- h'ghser thar? the S'Z?S of minimized sgnes .gr(]eneraéesddwnh
ditional test case in the RSR-reduced suite over the cor-H Br. These results are as expected. Neither H u nor

responding HGSBr-minimized suite, the number of addi- HGSBr_attemptto retain some test cases that may be redun-
tional faults detected by the RSR-reduced suite. A value ofOlant with respect to pranch coverage or def-use coverage.
1, for instance, would mean that for each additional test in However, RSR selectively adds those test cases that provide
the RSR-reduced suite. 1 more fault is detected. A nega_additional def-use coverage at the time they become redun-

tive value may occur if the RSR-reduced suite is larger but dant with respect to branch coverage. _
detects fewer faults than its HGSBr-minimized counterpart The_reforg, RSR reduced suites have the|r test cases se-
The ratio is computed as the number of additional faults de- lected in a different order than what is achieved by HGSdu.

tected by the RSR-reduced suite, divided by the number of herefore, itis expected that the sizes of reduced testsuit
additional tests in the RSR—reduc,ed suite. generated by RSR would be larger than those generated by

HGSBr and HGSdu. The white boxes in Figure 5 also show

Program ‘len‘ OA) Fault Loss mRSR vs HGSBr: Additional-Faults-to-Additional-Tests Ratio

tcas 0-0.5 8.45 46.55
totinfo 0-0.5 11.96 36.32
schedule 0-0.5 3.26 44.60
schedule2 0-0.5 2.15 49.02
printtokens 0-0.5 2.94 35.12

printtokens2 0-0.5 7.58 11.62
replace 0-0.5 12.13 41.66 . Q o _%

b s
Table 5. Avg. number of faults detected and :, \ \
avg. % fault detection loss when randomly ’
selected additional tests are added to match
the suite sizes computed by RSR technique.

that while RSR generally achieves less size reduction than
HGSBr, both RSR and HGSBr still generally achieve very swdect 2eosren
high levels of suite size reduction. Figure 6. The ratio of additional-faults to
additional-tests for the RSR-reduced suites

RSR vs HGSBr: % Size Reduction and % Fault Loss over the HGSBr_mlnlmlzed SUIteS

nnn

T ﬁ ! ﬁ ! ﬁ) ﬁ) f]) gener_ally a<_:hie_ves the least suite size _reduction with the
. ﬁ ﬁ E‘j ﬁ ﬁ ﬁ benefit of yielding the least fault detection loss. HGSdu
ﬁ T ! - ﬁ achieves a middle-ground between RSR and HGSBr. Con-
. ' sidering that even RSR is still able to achieve relativegyhhi
NS - ' , suite size reduction, the benefit of RSR in retaining more
° | B B : fault detection effectiveness in our experiments is eviden
| ‘ .. ‘ 5) Figure 6 shows the benefit of RSR in selecting additional
: 8 test cases that are likely to expose new faults. From the fig-
N | a1 | ure, notice that for every subject program, the average rati
| value is above 0. Fdrcas, t ot i nf o, pri ntt okens2,
b : andr epl ace, the median ratio value is above 0, indicat-
ing that over half of the ratio values are greater than 0. For
schedul e, schedul e2, andpri ntt okens, although
the median value is at 0 with a lower quatrtile also at 0, in-
boxes) and % fault detection loss (gray boxes) dicating that over half of the ra}tio values are greater than o
for the RSR and HGSBr techniques. equal to 0, t_he.average value is more than O.t_chs, the _
upper quartile is over 1 (more than 25% of suites have ratio
Fault Detection Loss of Reduced Test Suites: We ob- value greater than 1), and foot i nf 0, the upper quartile
serve from the Table 4 that there is a strong tendency foris over 2 (more than 25% of suites have ratio value greater
RSR reduced suites to detect more faults than HGSBr andthan 2!). Forr epl ace, even the lower quartile is greater
HGSdu-minimized suites. This is expected since both RSRthan 0 (over 75% of suites have a positive ratio value).
and HGSdu-reduced suites retain the same all-uses cover- |t s reasonable to ask whether or not the increased fault
age as their non-reduced counterparts, but RSR reducegetection retention of RSR is dugerelyto the fact that
suites contain some redundancy with respect to test caseghe RSR-reduced suites are larger than the other minimized
that provide additional def-use coverage by exercising al- syjtes. It turns out this is not the case. As indicated by the
ready covered branches in a different order. From our ex-results in Table 5 compared to the RSR results in Table 4,
periments it appears that this form of redundancy is effec-jn)| cases, the average number of faults detected by the
tive at retaining test cases that are likely to expose faults randomly-added suites is less than the average number of
The gray boxes in Figure 5 also show that the fault detec-t5yts detected by the corresponding RSR-reduced suites.
tion losses experienced by RSR are considerably less thamccordingly, the average percentage fault detection léss o
that experienced by HGSBr, and overall, the fault loss val- the randomly-added suites is always more than the average
ues for both RSR and HGSBr are considerably less than thegzy|t detection loss of the RSR-reduced suites. Our exper-
corresponding suite size reduction values. imental results clearly show the potential of our new tech-
Test Suite Reduction vs. Fault Detection Loss; HGSBr nigue in selecting a small set of redundant test cases which
generally achieves the most suite size reduction at the exHave a high chance of detecting new faults.
pense of yielding the most fault detection loss, while RSR We would now like to elaborate on the following possible

Figure 5. The % suite size reduction (white

points of discussion regarding our approach. mary criterion but also with respect to the secondary crite-
“Fault detection effectiveness loss is still very |arge rion because of the order in which they were added to the
across all reduction techniquesy even in the new approacHeduced suite. The fundamental difference is that our new
- the technique of test suite reduction itself is a lost cduse @algorithm specifically seeks tmclude redundancyn the
There are many factors at work which influence the fault reduced suites while the minimization teChniqUeS seek to
detection effectiveness loss of suites. For instanceate t €liminate as much redundancy as possible.
cases used in our experiments were selected from pools as5 Related Work
sembled by Siemens researchers, and the test cases were
generated with respect to various kinds of black-box andth
white-box approaches. Therefore, many of the test cases i
our suites are intentionally meant to test entities withie t
subject programs that we do not know, nor that we have ac-
counted for during reduction. Therefoegysuch test cases

Finding a minimal size subset of a test suite that covers
e same set of requirements as the unminimized suite is an
NP complete problem. This can be easily shown by a poly-
nomial time reduction from the the set-cover problem [6] to
the test suite minimization problem. Existing test suit@mi

ldb - hi ial ab h bi imization techniques are defined in terms of test case cover-
could be exercising something special about the subjeet pro age as they attempt to minimize the size of a suite while

gram that we do not realize (such as special boundary CONY eeping some coverage requirement constant. A simple

?At'ons or combll(r;atmnlst (.)f Ifnplljtt(;/atluets), alnd thl:_'S throwmg{ greedy algorithm for the set-cover problem (and therefore
em away could resuft in faut detection 10SS. HOWEVET, It ¢, yya test suite minimization problem) is described in [4]

is quite remarkable that for all the techniques discussed inAn algorithm [7] based on a heuristic to select a minimal

this paper, much higher percentage suite size reduction is

hieved dtoth di . ¢ Eubset of test cases that covers the same set of requirements
ZZteI?:\tliin?oSs?mpare 0 the corresponding percentage falis the unminimized suite was developed by Harold, Soffa

and Gupta. Agrawal [1] used the notion of megablocks to
“How about the cost of mapping of primary and sec- derive coverage implications among the blocks to reduce
ondary requirements to test cases?” This consideration isest suites such that the coverage of statements and beanche
important because the primary motivation for test suite re- jn the reduced suite implies the coverage of the rest. Sam-
duction techniques is that testers may be under severe timgath, Mihaylov, Souter and Pollock used concept analysis
and resource constraints. However, note that the processi g] for incrementally creating and maintaining a reduced
of mapping the primary and secondary requirements to teskest suite for web applications. Although we have imple-
cases is completely automated. On the other hand, the testmented our approach to test suite reduction with selective
ing process involves more than just executing test casestedundancy by modifying the HGS algorithm, our approach
the outputs of test cases need to be checked for correctnesgs general and can be applied to any test suite minimization
which can often be automated only partially or done man- technique. A related topic is that of test case prioritizati
ually. We believe that the potential savings on time and |n contrast to test suite minimization techniques which at-
resource requirements in testing of software, resultiogfr tempt to remove test cases from the suite, the test case prior
the use of test suite reduction techniques for periodic main jtization techniques [5, 15, 17] only re-order the exeautio

tenance of test suites to keep their size manageable, willof test cases within a suite with the goal of early detection
offset the cost of mapping the requirements to test cases. lpf faults.

is in this context, our test suite reduction with selectige r In [18], the ATACMIN tool [9] was used to find opti-
dundancy attempts to retain those test cases in the test suitma| solutions for minimizations of all test suites examined
that are likely to expose faults. This work showed that reducing the size of test suites while

“How does the new approach to reduction with selec- keeping all-uses coverage constant could result in litle t
tive redundancy differ from simply using the original HGS no loss in fault detection effectiveness. In contrast, the e
algorithm to minimize the test suites with respect to both pirical study conducted in [14] suggests that reducing test
primary and secondary criteria at the same time?” In our suites can severely compromise the fault detection capabil
approach, the test cases that become redundant with respeites of the suites. The work presented in [8] uses a greedy
to the primary criterion are checked for their additionalco technique for suite reduction in the context of model-based
erage with respect to the secondary crite@srsoon ashey testing. This work showed that while suite sizes could be
become redundant with respect to the primary criterion. So,greatly reduced, the fault detection capability of the xtl
the reduced suites generated by our approach have their testuites was adversely affected. A new model for test suite
cases selected in a different order than what is achieved byminimization [3] has been developed that explicitly corsid
minimization with respect to only the secondary criterion ers two objectives: minimizing a test suite with respect to
or both criteria used at the same time. As a result the re-a particular level of coverage, while simultaneously tgyin
duced test suites generated with our approach can have tesb maximize error detection rates with respect to one par-
cases that are redundant not only with respect to the pri-ticular fault. A limitation of this model is that fault detec

tion information is considered with respect to a singletfaul
(rather than a collection of faults), and therefore therg ma
be limited confidence that the reduced suite will be useful
in detecting a variety of other faults. Techniques for test
suite minimization that are specifically tailored to comrsid
the complexity of the modified condition/decision cover-
age criterion have been developed in [12]. Experimental
results in [12] showed that while suite size reduction could
be substantial for both reduction techniques, the fauéaet

(3]

J. Black, E. Melachrinoudis, and D. Kaeli. Bi-critericoa+
els for all-uses test suite reductidnternational Conference
on Software Engineeringrages 106—115, May 2004.

[4] V. Chvatal. A greedy heuristic for the set-covering desh.

(5]

tion loss of suites reduced under these two techniques may [6]

vary greatly depending upon the particular program and test
suites used.

Suite size and fault detection effectiveness are opposing
forces in the sense that more suite size reduction would in-
tuitively imply more fault detection effectiveness lossce
throwing away more test cases, in effect, throws away more
opportunities for detecting faults. Thus, there seems to be
an inherent tradeoff involved in test suite reduction: one
may choose to sacrifice some suite size reduction in order
to increase the chances of retaining more fault detection ef

(7]

(8]

Mathematics of Operations Researdf(3):233-235, August
1979.

S. Elbaum, A. G. Malishvesky, and G. Rothermel. Test case
prioritization: A family of empirical studiesIEEE Trans-
actions on Software Engineering8(2):159-182, February
2002.

M. R. Garey and D. S. Johnso@omputers and Intractabil-
ity: A Guide to the Theory of NP-Completenesgeeman
and Company, New York, NY, 1979.

M. J. Harrold, R. Gupta, and M. L. Soffa. A methodology
for controlling the size of a test suitdCM Transactions on
Software Engineering and Methodolg@(3):270-285, July
1993.

M. P. E. Heimdahl and D. George. Test-suite reduction for
model-based tests: Effects on test quality and implication
for testing.Proceedings of the 19th IEEE International Con-
ference on Automated Software Engineeripgages 176—
185, September 2004.

fectiveness. Our experimental results suggest that our new [9] J. R. Horganand S. A. London. ATAC: A data flow coverage

algorithm may provide a framework for testers to have more
flexibility in determining the conditions of this tradeoff.

6 Conclusionsand Future Work

[10]
[11]

We have presented a new approach to test suite reduction

that attempts to selectively keep redundant test cases with
the goal of decreasing the loss of fault detection effeetive

ness due to reduction in suite size. Our approach is general

and can be integrated into any existing test suite minimiza-
tion algorithm. In our experimental study, our approach
consistently performed better than test suite minimizatio
without redundancy by generating reduced test suites with

[12]

[13]

less fault detection loss at the expense of a small increase

in the size of the reduced suite. In the near future, we plan
to evaluate the effectiveness of our technique for tesesuit
reduction with selective redundancy for a combination of
white-box and black-box coverage requirements.

Acknowledgments.

We thank Dr. Gregg Rothermel, Dept. of Computer Sci-

ence, University of Nebraska, for providing the Siemens

suite of programs, their instrumented versions for measur-
ing edge coverage and the associated test suites.

References

[1] H. Agrawal. Efficient coverage testing using global demi
nator graphs.Workshop on Program Analysis for Software
Tools and Engineeringpages 11-20, September 1999.

[2] M. Balcer, W. Hasling, and T. Ostrand. Automatic genera-
tion of test scripts from formal test specificatior&oceed-
ings of the 3rd Symposium on Software Testing, Analysis,
and Verification pages 210-218, December 1989.

[14]

[15]

[16]

[17]

(18]

testing tool for CProceedings of Symposium on Assessment
of Quality Software Development Toplzages 2-10, May
1992.

http://www.cse.unl.edu/galileo/sir.

M. Hutchins, H. Foster, T. Goradia, and T. Ostrand. Ex-
periments on the effectiveness of dataflow- and controlflow-
based test adequacy criteridroceedings of the 16th Inter-
national Conference on Software Engineeripgges 191—
200, May 1994.

J. A. Jones and M. J. Harrold. Test-suite reduction
and prioritization for modified condition/decision covgea
IEEE Transactions on Software Engineering9(3):195—
209, March 2003.

T. Ostrand and M. Balcer. The category-partition meitfar
specifying and generating functional tesBommunications

of the ACM 31(6):676—686, June 1988.

G. Rothermel, M. J. Harrold, J. Ostrin, and C. Hong. Arrem
pirical study of the effects of minimization on the fault de-
tection capabilities of test suitesnternational Conference
on Software Maintenan¢c@ages 34-43, November 1998.

G. Rothermel, R. H. Untch, C. Chu, and M. J. Harrold. Pri-
oritizing test cases for regression testitigEE Transactions

of Software Engineerin®7(10):929-948, October 2001.

S. Sampath, V. Mihaylov, A. Souter, and L. Pollock. Alsca
able approach to user-session based testing of web appli-
cations through concept analysiBroceedings of the 19th
IEEE International Conference on Automated Software En-
gineering pages 132-141, September 2004.

A. Srivastava and J. Thiagrajan. Effectively pricaitig tests

in development environmentinternational Symposium on
Software Testing and Analysjzages 97-106, July 2002.

W. E. Wong, J. R. Horgan, S. London, and A. P. Mathur. Ef-
fect of test set minimization on fault detection effectiges.
Software - Practice and Experienc28(4):347-369, April
1998.

