
Effective and Efficient Localization of Multiple Faults using Value Replacement

Dennis Jeffrey
Univ. of California, Riverside

jeffreyd@cs.ucr.edu

Neelam Gupta
guptajneelam@gmail.com

Rajiv Gupta
Univ. of California, Riverside

gupta@cs.ucr.edu

Abstract

We previously presented a fault localization technique
called Value Replacement that repeatedly alters the state of
an executing program to locate a faulty statement [9]. The
technique searches for program statements involving values
that can be altered during runtime to cause the incorrect
output of a failing run to become correct. We showed that
highly effective fault localization results could be achieved
by the technique on programs containing single faults. In
the current work, we generalize Value Replacement so that
it can also perform effectively in the presence of multiple
faults. We improve scalability by describing two techniques
that significantly improve the efficiency of Value Replace-
ment. In our experimental study, our generalized technique
effectively isolates multiple simultaneous faults in time on
the order of minutes in each case, whereas in [9], the tech-
nique had sometimes required time on the order of hours to
isolate only single faults.

1. Introduction
The process of finding, understanding, and fixing soft-

ware defects (“bugs” or “faults”) is called software debug-
ging. This is an important and necessary phase of soft-
ware development, due to the prevalence of bugs in program
source code. Software debugging helps to make software
more robust and reliable.

An important phase of software debugging, fault local-
ization, involves locating faulty program statements. Fault
localization research aims to develop automated techniques
to assist developers in finding bugs. Dynamic Program Slic-
ing [2, 15, 21, 26, 27, 28] can compute a subset of pro-
gram statements, likely containing a faulty statement, that
directly or indirectly affects the erroneous output produced
during a failing execution. Delta Debugging [4, 23, 24]
analyzes differences in program state between success-
ful and failing executions to isolate a bug. Other ap-
proaches [14, 16, 17] use runtime information to rank pro-
gram statements according to likelihood of being faulty.

In our prior work [9], we describe a state-altering tech-
nique to locate program bugs called Value Replacement.

This technique involves replacing the set of values used
at a statement instance in a failing run with an alternate
set of values, then checking to see whether the failing run
changes as a result to become passing. The statement in-
stances where this is true are likely to be associated with a
fault. We showed [9] that the Value Replacement technique
can achieve highly effective fault localization results using
the Siemens benchmark programs [8]. These results were a
substantial improvement over those achieved by the Taran-
tula statistical technique [14], which itself was shown [13]
to yield better results on the Siemens benchmarks than sev-
eral other prior approaches. However, one issue with Value
Replacement is that the effectiveness of locating faults can
be reduced when multiple simultaneous faults are present.
This is because the technique considers multiple failing
runs; when different runs fail due to different faults, this
can make it more difficult to isolate the faulty statements,
thereby decreasing the effectiveness of the technique.

In the current work, we show how to generalize the
Value Replacement technique into an iterative technique
that can effectively handle the situation when multiple faults
are present in software. We first consider a minimal-
computation approach in which Value Replacement is ap-
plied only once to rank program statements, and the search
for all faults is performed within the single ranked list
(relatively low cost, but relatively low effectiveness). We
next consider a full-recomputation approach in which Value
Replacement is iteratively invoked to find and fix one
fault at a time (relatively high effectiveness, but relatively
high cost). Finally, we consider a middle-ground, partial-
recomputation approach in which only a part of the required
computation for Value Replacement is performed on each
iteration to find and fix a fault (lesser cost with effective-
ness approximating that of full-recomputation).

A limitation of the core Value Replacement technique
is that it may require considerable computation time. Our
prior experiments [9] with the single-fault Siemens bench-
marks showed that while many faults could be isolated
within a matter of minutes, other faults required time on
the order of hours to locate, due to relatively long execution
traces of failing tests. In the worst case, one particular fault



required over 14 hours to locate. This efficiency issue be-
comes considerably more pronounced when iteratively han-
dling multiple simultaneous faults. To address this concern,
we describe two improvements that significantly speed-up
the required computation time to locate faults using Value
Replacement: (1) removing redundant execution when per-
forming value replacements; and (2) parallelizing the task
of performing value replacements. We noticed considerable
improvement in the efficiency of the core Value Replace-
ment technique when applying these two improvements: the
situation mentioned above that previously required over 14
hours to locate a single fault, now requires only 27 min-
utes to achieve the same result. These improvements in ef-
ficiency have enabled us to generalize Value Replacement
into an iterative technique that can address the issue of mul-
tiple faults. The main contributions of this paper are:

• A new technique (with three variants) that general-
izes Value Replacement to promote effectiveness in the
presence of multiple faults.

• Two techniques that significantly improve the effi-
ciency of Value Replacement.

• An experimental study demonstrating the effectiveness
and efficiency of our multiple-fault technique.

In the next section, we describe the core Value Replace-
ment technique and its generalization to handle multiple
faults. We then describe two techniques to significantly
improve the efficiency of Value Replacement (Section 3).
We present an experimental study (Section 4), related work
(Section 5), and a summary of our conclusions (Section 6).

2. Value Replacement and its Generalization to
Handle Multiple Faults

2.1. Single-Fault Core Technique

We previously presented the core Value Replacement
technique for fault localization [9]. The technique involves
performing value replacements in order to search for inter-
esting value mapping pairs in a failing run. A value re-
placement is the act of replacing the set of values used at a
statement instance in a failing run with an alternate set of
values, then letting execution proceed from that point to ob-
serve the effect on the program output. If the output changes
to become correct, then an interesting value mapping pair
(IVMP) is identified and associated with the statement in-
stance, indicating the original and alternate sets of values
at that point that caused the failing run to become passing.
Alternate sets of values are selected from profiling informa-
tion taken from the executions of all test cases in an avail-
able test suite. Different alternate value sets are used to per-
form value replacements in each statement instance in each
failing run. The key idea of Value Replacement is that the
statements associated with IVMPs in more failing runs, are

Single-Fault Approach

Value Replacement

Faulty program
and test suite

Developer
Find/Fix Fault

Ranked list of program
statements

Done!

Multiple-Fault, Minimal-Computation Approach

Value Replacement

Faulty program
and test suite

Developer
Find/Fix Fault

Ranked list of program
statements

Done!Failing Run Remains?
NoYes

(A) (B)

Multi-Fault, Full-Recomputation App.

(C)

Multi-Fault, Partial-Recomputation App.

(D)

(Full)
Value Replacement

Faulty program
and test suite

Developer
Find/Fix Fault

Ranked list of program
statements

Done!Failing Run Remains?
NoYes

Partial
Value Replacement

Faulty program
and test suite

Developer
Find/Fix Fault

Ranked list of program
statements

Done!Failing Run Remains?
NoYes

Figure 1. Single-fault core technique (A) and
multi-fault generalized techniques (B-D).

more likely to be faulty. A suspiciousness value is associ-
ated with each statement exercised by a failing run, which
is simply the number of failing runs in which that statement
is associated with at least one IVMP. Statements are then
ranked in decreasing order of this suspiciousness.

We showed [9] that Value Replacement can achieve sig-
nificantly better fault localization results on the Siemens
benchmark programs [8] than another statistical approach
called Tarantula [14]. Moreover, Tarantula had been previ-
ously shown [13] to be more effective on the same bench-
mark programs than several other prior approaches. How-
ever, the benefits of Value Replacement come at the expense
of significantly increased computation time. We address the
issue of efficiency in Section 3.

Value Replacement implicitly assumes that all failing
runs fail due to a single fault. In the event that runs fail
due to different faults, this can lead to faulty statements po-
tentially having lower suspiciousness than other non-faulty
statements, limiting the effectiveness of the technique.

2.2. Multi-Fault Generalized Techniques

In the single-fault Value Replacement technique, a
ranked list of program statements is computed and pre-
sented to a developer. The developer can then search the
reported statements in order until the faulty statement is
found. Figure 1(A) depicts this scenario. To handle mul-
tiple simultaneous faults, we generalize the technique to it-
eratively present the developer with ranked lists of program
statements, each time allowing the developer to find and fix
a fault. After each iteration, a new ranked list may be com-
puted as long as at least one failing run remains, so that re-
maining faults can be located. We consider three variations
of the multiple-fault generalized Value Replacement tech-
nique. First, we consider a minimal-computation approach
where Value Replacement is performed only once, and the
developer uses the single ranked list of statements to search



input:
Faulty program P , and test suite T containing at least one
failing run.

output:
Program P ′ such that no tests in T fail.

algorithm MinimalComputationApproach
begin
1: rankedList := Run Value Replacement(P , T );
2: P ′ := P ;
3: while ∃ a failing run in T wrt. P ′ do
4: F := locate next fault using rankedList;
5: P ′ := version of P after fixing F ;

endwhile
end MinimalComputationApproach

Figure 2. Minimal-computation approach to
locate multiple faults.

for faulty statements as needed (Figure 1(B)). Second, we
consider the opposite extreme: a full-recomputation ap-
proach in which we perform (regular) Value Replacement,
allow the developer to find and fix a fault, then repeat this
process on the new version of the program as necessary
(Figure 1(C)). Finally, we consider a partial-recomputation
approach that performs only partial Value Replacement
computation on each iteration (Figure 1(D)).

2.2.1 Minimal-Computation
The minimal-computation approach is presented in Fig-
ure 2. The approach takes as input a faulty program and
a corresponding set of test cases containing at least one fail-
ing run. First, the Value Replacement approach is executed
to obtain a ranked list of program statements (line 1). Then,
as long as a failing run exists in the test suite with respect
to the current version of the program (line 3), the ranked
list is used to locate a fault in the program (line 4), which is
then fixed (line 5), resulting in a new version of the program
with the fault removed. The actual identification and fixing
of a faulty statement is done manually by a developer. If at
least one run still fails on the new version of the program,
then the (same) ranked list is consulted again to find and
fix another fault (back to line 3). Under this approach, the
computation time is expected to be comparable to that of the
original single-fault Value Replacement technique, since a
ranked list of program statements need be computed only
once. However, the drawback is that the average fault lo-
calization effectiveness for each individual fault may be re-
duced, since the ranked list is never updated as the program
is modified and faults are corrected over time.

2.2.2 Full-Recomputation
The full-recomputation approach is identical to the
minimal-computation approach, except the invocation of
the Value Replacement technique has been moved to inside
the main loop (in Figure 2, this involves moving line 1 in-
between lines 3 and 4). The effect is that a revised ranked

input:
Faulty program P , and test suite T containing
at least one failing run.

output:
Program P ′ such that no tests in T fail.

algorithm PartialRecomputationApproach
begin
Step 1: [Compute ranked lists and find/fix first fault]
1: RankedLists := {};
2: Stmtfail := stmts exercised by failing runs in T ;
3: for each stmt s ∈ Stmtfail do
4: F := failing runs in T which do not exercise s;
5: rankList := Run Value Replacement(P , T − F );
6: RankedLists := RankedLists ∪ {rankList};

endfor
7: selectedList := removeFirstList(RankedLists);
8: F := locate next fault using selectedList;
9: faultyStmt := the stmt containing F ;
10: P ′ := version of P after fixing F ;
Step 2: [Revise ranked lists and find/fix next fault]
11: while ∃ a failing run in T wrt. P ′ do
12: Fail := failing runs in T exercising faultyStmt

with respect to P ′;
13: compute IVMPs for each run in Fail wrt. P ′;
14: update any affected lists in RankedLists;
15: selectedList := removeNextList(RankedLists);
16: F := locate next fault using selectedList;
17: faultyStmt := the stmt containing F ;
18: P ′ := version of P after fixing F ;

endwhile
end PartialRecomputationApproach

Figure 3. Partial-recomputation approach to
locate multiple faults.

list is computed on each iteration when a fault is found and
fixed. This ensures that the approach has up-to-date data
that can be used to compute a more effective ranking on
each iteration. However, the timing requirements increase
significantly because Value Replacement must be invoked
on every iteration to search for new IVMPs.

2.2.3 Partial-Recomputation
The partial-recomputation approach is presented in Fig-
ure 3. This approach consists of two main steps. First, a set
of ranked lists is computed, and they are used to find and
fix a first fault in the program. Second, the approach itera-
tively performs partial Value Replacement re-computation,
updates any affected ranked lists, and then uses the revised
ranked lists to find and fix a next fault.

Step 1: Initialize ranked lists and handle the first
fault (lines 1-10). In this step, the approach first collects
together all statements exercised by failing runs to consider
for ranking purposes (line 2). Next, for each of these state-
ments s, a ranked list of program statements is computed
using Value Replacement by searching for IVMPs in only
those failing runs exercising s (lines 3-6). The intuition for



1

2

3 4

5

FAULTY

FAULTY

Original Program
(5 statements,

2 of which are faulty)

Failing Runs

2, 4, 51, 2, 4, 53

1, 21, 2, 3, 52

2, 51, 2, 3, 51

Statements 
with IVMPs

Execution 
Trace

Run 
Number

Computed Ranked Lists: (statementsuspiciousness)

1

2

3

4

5

23, 52, 11, 41, 30

23, 52, 11, 41, 30

22, 11, 51, 30, 40

21, 41, 51, 10, 30

23, 52, 11, 41, 30

[based on runs 1, 2, 3]

[based on runs 1, 2, 3]

[based on runs 1, 2]

[based on run 3]

[based on runs 1, 2, 3]

Figure 4. Abstract example for running the
partial-recomputation approach, part 1 of 2.

this step is as follows: we know at least one of the state-
ments s is faulty, and we are most likely to achieve maxi-
mum suspiciousness for such a statement if we rank state-
ments based on the IVMP information of only those failing
runs which exercise s; since we do not know which state-
ments are faulty, we compute a ranked list for each consid-
ered statement. Next, from among the set of ranked lists,
we select and remove one of them to be used to locate the
first fault (line 7). This is determined by choosing the list in
which the statement at the front of the ranked list has high-
est suspiciousness (look at subsequent statements to break
ties). This list is most likely to quickly lead a developer to
the first fault. The developer uses the selected ranked list to
find the first fault (lines 8-9) and fix it (line 10).

Step 2: Iteratively revise ranked lists and handle the
next fault (lines 11-18). The second step iterates as long as
a failing run still exists (line 11). First, in the new version of
the program, the approach identifies the set of failing runs
exercising the faulty statement that was just fixed (line 12).
For only these failing runs (not for all failing runs), IVMPs
are re-computed (line 13). Note that this step only searches
for IVMPs in a subset of failing runs; it does not actually
compute suspiciousness values and a ranked list as is done
in the call to Run Value Replacement at line 5. Based on
the updated IVMP information, any affected ranked lists
from the set of maintained lists are updated so that their
rankings may change (line 14). A ranked list is considered
affected if it was computed using one of the failing runs for
which new IVMPs were just computed. Then, using the
revised set of ranked lists, the next one to use for fault lo-
calization purposes is selected and removed (line 15). Note
that the selection criterion here is different than in line 7. In
this case, we select the ranked list for which the statements
near the front of the list are the most different from those
statements near the fronts of the previously-selected lists.
We compute this by setting a difference threshold value D,
and then we scan all ranked lists in order in parallel, select-
ing the first ranked list that achieves D different statements
as compared to those statements in the previously-selected
lists (we used D = 10 in our experiments since that gave

1

2

3 4

5

FAULTY

Modified Program
(5 statements,

1 of which is still faulty)

Failing Runs

41, 2, 4, 53

Statements 
with IVMPs

Execution 
Trace

Run 
Number

Revised Ranked Lists: (statementsuspiciousness)

2

3

4

5

22, 11, 41, 51, 30

22, 11, 51, 30, 40

41, 10, 20, 30, 50

22, 11, 41, 51, 30

[based on runs 1, 2, 3 (3 was updated)]

[no updates needed here]

[based on run 3 (updated)]

[based on runs 1, 2, 3 (3 was updated)]

Figure 5. Abstract example for running the
partial-recomputation approach, part 2 of 2.

good results on our subject programs). The intuition for this
criterion is that a different fault is likely to have a different
set of statements with high suspiciousness, than for those
faults already found and fixed. The selected list is finally
used to locate (lines 16-17) and fix (line 18) the next fault.

Example. We demonstrate the partial-recomputation ap-
proach with a small example. Figure 4 shows an example
control-flow graph of a program containing 5 statements,
2 of which happen to be faulty. Suppose a test suite is
available that contains 3 failing runs as depicted in the fig-
ure, with associated execution traces and sets of statements
containing IVMPs as shown (IVMPs were computed as de-
scribed in [9] and summarized in Section 2.1). In this case,
two of the runs fail due to faulty statement 2, and one of
them fails due to faulty statement 4. In the first step, we
identify the set of statements exercised by failing runs (all
statements in this case). Next, we compute a ranked list
to associate with each one of these statements, by ordering
statements according to suspiciousness value. Recall that
the suspiciousness value is the number of (considered) fail-
ing runs in which the associated statement has an IVMP.
The 5 computed ranked lists for our example are shown in
Figure 4. Each of these ranked lists is computed using the
IVMP information from only those failing runs exercising
the statement that is associated with the ranked list. For
example, the ranked list associated with statement 4 is com-
puting using only run 3 (only run 3 exercises statement 4).

Next, the approach identifies the first ranked list (from
among the 5 computed lists) to remove and report to a de-
veloper. This is the one with highest suspiciousness values
at the front of the list. Ranked lists 1, 2, and 5 have the first
ranked element with highest suspiciousness; since the lists
are identical (no ties can be broken), an arbitrary choice is
made from these lists. Suppose list 1 is selected, removed,
and reported to the developer. Then faulty statement 2 is
immediately identified because it occurs at the front of the
selected list; the developer can then fix this faulty statement.

Figure 5 shows how the situation might look after faulty
statement 2 is fixed. In this case, statement 4 is the only re-
maining faulty statement. Assume that run 3 is the only
run that still fails. Further assume that on the new ver-
sion of the program, run 3 is associated with an IVMP



at only statement 4. Next, the second step of the partial-
recomputation approach is executed. First, the approach
identifies which subset of newly-failing runs need to be re-
searched for IVMPs. In our example, failing run 3 exercises
statement 2 (the most recently-fixed statement), so run 3
must be re-searched for IVMPs. In practice, not all fail-
ing runs may need to be re-searched for IVMPs in this step.
Next, from among the remaining ranked lists, only lists 2,
4, and 5 are affected by the new IVMPs and need to be up-
dated (list 3 was not originally computed using run 3). In
the original version of the program, run 3 was associated
with IVMPs at statements 2, 4, and 5. However, in the new
version of the program (with corrected statement 2), run 3
is associated with IVMPs at only statement 4. Thus, ranked
lists 2, 4, and 5 are updated to reflect a decrease of 1 in the
suspiciousness values for statements 2 and 5 (shown in Fig-
ure 5). Now, the next ranked list to remove and report to
the developer is selected. In this case, we select the ranked
list from among those remaining, that is most different from
the first-selected ranked list, in terms of the elements near
the fronts of the lists. Since the first-selected ranked list had
started with statement 2, then from among the remaining
lists, list 4 is the most different because it is the only re-
maining list that does not also start with statement 2. Thus,
ranked list 4 is selected. This allows the developer to imme-
diately fix faulty statement 4 (since it appears at the front of
the ranked list). At this point, no failing runs remain since
all faults are fixed, and the approach terminates. Overall in
this example, two ranked lists were selected and reported
to the developer, each list accurately identifying one of the
faults with highest suspiciousness.

3. Value Replacement: Improving Efficiency

The efficiency of the Value Replacement fault local-
ization technique is determined by the search for IVMPs
in each failing run. Searching for IVMPs can be time-
consuming because it is essentially a testing approach
where many program executions are performed. On each
execution, the state of the executing program is changed at
some point (where the value replacement is performed), and
then the effect on the program output is observed. More-
over, this must be performed once for each alternate set of
values to try at each statement instance, and at each state-
ment instance in multiple failing runs.

We make two observations about the search for IVMPs
that allow us to significantly speed-up the search time: (1)
within a failing run, the search for IVMPs involves a sig-
nificant amount of redundant program execution; (2) each
value replacement can be performed in isolation, and thus
the search for IVMPs is inherently parallelizable.

Removing redundant program execution. There is
significant redundant program execution in the search for
IVMPs within a failing run. This is because in a value

stmt instance 1

stmt instance 2

stmt instance 3

Original Execution

(assume 2 value replacements to 
perform at each stmt instance)

Regular Value Replacement Executions

1

(A) (B)

(C) (D)

1 2 3 4 5 6

duplicated 5x

duplicated 3x

duplicated 1x

(various portions of the original execution are duplicated multiple 
times when performing value replacements)

1 3 5 6 4 2

With Redundant Execution Removed

(no duplication of any portion of 
original execution)

With Parallelization

1 2 1 2 2 1

(time required to perform all value 
replacements is reduced)

Figure 6. Improving efficiency of Value Re-
placement. The circled numbers indicate the
relative time at which execution terminates.

replacement program execution, the part of the execution
before the value replacement is the same as in the origi-
nal failing run (execution is affected only from the point of
the value replacement onwards). Many different value re-
placement executions in the same failing run therefore leads
to a significant amount of redundant execution. This is il-
lustrated in Figure 6. In Figure 6(A), an original program
execution is shown with 3 statement instances; assume 2
value replacements are performed at each instance, for a to-
tal of 6 value replacements. Figure 6(B) shows each of these
6 value replacement executions, along with the duplicated
portions of the original execution.

To remove this redundant execution, we require a mech-
anism that allows for the following: at a statement instance
in a failing run at which we need to perform a value re-
placement, we need to be able to perform the value replace-
ment and then return directly to the same point, without re-
executing everything before this point, so that we can con-
tinue with additional value replacements. In this way, we
avoid all redundant execution prior to the point of a value
replacement. The fork() function in C can provide us
with this functionality.

Our method for removing redundant program execution
is as follows. We execute the failing run once, from be-
ginning to end. At each statement instance during execu-
tion at which we need to apply one or more value replace-
ments, we invoke fork to create a child process to carry
out each value replacement. When the fork function call
occurs, a new child process is created which is identical
to the parent (original) process, except for a new process
ID. The parent process then waits at that statement instance
as each child completes its value replacement. Afterwards,
the parent process moves onto the next statement instance,
where more children may be forked to perform more value
replacements. This eliminates all redundant portions of ex-
ecution, as depicted in Figure 6(C).



We had to specially handle the input and output of the
parent and child processes in our implementation to ensure
they are not affected by the forking, because fork dupli-
cates file pointers, which can cause intermixed input/output.
This was done by initially capturing all the input and output
of the original parent process (representing the original fail-
ing execution). When a child process was forked, then its
set of input and output was specifically adjusted (such as by
setting new file pointers as necessary) to match that of the
parent at that point. Reads from “standard-in” were han-
dled by writing these input values to a file after the initial
input/output capturing phase, then just reading from this file
as necessary during the forking/value replacement phase.

Parallelizing the search for IVMPs. Each time a value
replacement is performed when searching for IVMPs, it
can be done in isolation from all other value replacements.
Thus, multiple available cores can carry out multiple value
replacements in parallel. To take advantage of this, we par-
allelize the search for IVMPs in two ways. First, we parti-
tion the set of all value replacements to perform into N task
sets, where N is the number of available cores. Then each
task set is handed off to an available core, which performs
the specified set of value replacements (the IVMP search re-
sults from all cores are merged together in the end). Second,
when a parent process forks C children to perform C value
replacements at a statement instance during execution, then
those C children are simply allowed to execute in parallel.
This parallelization is illustrated in Figure 6(D). In the fig-
ure, the 6 value replacements are partitioned into 2 task sets.
The figure also assumes that enough idle cores are available
to process all children in parallel at each statement instance.
The circled numbers in Figure 6(D) show multiple value re-
placement executions terminating at the same relative time
unit; this is due to multiple value replacements being per-
formed in parallel.

To illustrate the benefit of our efficiency improvements,
in our prior work [9], the worst-case situation required over
14 hours to perform all the necessary value replacements to
locate a fault. With the efficiency improvements described
above, that same result can be achieved in only 27 minutes.
However, the focus in the current work is on locating mul-
tiple simultaneous faults (not single faults as in [9]), so the
improvements in efficiency are tempered by the iterative na-
ture of the current multiple-fault approach.

4. Experimental Study
4.1. Setup

Implementation. Our implementation of the core Value
Replacement fault localization technique is based on the
Valgrind infrastructure [7, 19] that allows for dynamic bi-
nary translation of an executing program. We created a tool
to work in conjunction with Valgrind that performs value
replacements to search for IVMPs. On top of this, we used

Prog. LOC # Faulty # Test Program
Name Versions Cases Description
tcas 138 41 1608 altitude separation
totinfo 346 23 1052 statistic computation
sched 299 9 2650 priority scheduler
sched2 297 9 2710 priority scheduler
ptok 402 7 4130 lexical analyzer
ptok2 483 9 4115 lexical analyzer
replace 516 31 5542 pattern substituter

Table 1. The Siemens benchmark programs.

Java to implement the three variants of our extended tech-
nique for handling multiple faults.

Our experiments were conducted using a Dell Pow-
erEdge 1900 server with two Intel Xeon quad-core proces-
sors at 3.00 GHz, with 16 GB of RAM. Because of the mul-
tiple cores available, we implemented both of the efficiency
improvements (removing redundant execution, and paral-
lelization) described in Section 3.

Subject programs and test suites. Our experimental
subjects are based on the Siemens benchmark programs and
test cases [8] described in Table 1. Each of the Siemens
programs are associated with a set of faulty versions – each
containing a single seeded fault – and a pool of test cases.

For our experiments, we require a set of programs con-
taining multiple faults. To create a set of multiple-fault
faulty versions for each subject program, we randomly se-
lected from among the available seeded faults to create
faulty versions that each contain 5 seeded faults. We en-
sured that each fault in a multiple-fault version is contained
in a different statement. We created up to 20 unique 5-fault
faulty versions for each subject program, as permitted by
the set of available faults. We were only able to create 2
and 11 such versions for programs ptok and ptok2 re-
spectively, due to a limited number of available faults, some
of which conflicted by being located in the same statement
and could not be incorporated into the same faulty version.

For each multiple-fault version of each subject program,
we created a test suite by selecting tests randomly from
the associated test case pool until the following criteria
were achieved: (1) the suite is statement-coverage adequate
(achieving the same statement coverage as the test case
pool); (2) for each faulty statement present in the multiple-
fault version, there exists a failing run in the suite exercising
that statement; and (3) there are at least 5 failing runs and 5
passing runs in the suite (to ensure a good mix of failing and
passing runs). Table 2 shows the number of multiple-fault
faulty versions created for each subject program, as well as
the average test suite size associated with each one.

Approaches and metric for comparison. We compare
the fault localization effectiveness and efficiency of the fol-
lowing generalized Value Replacement techniques to han-
dle multiple simultaneous faults.



Prog. # 5-Fault Avg. Test Suite Size
Name Faulty Versions (# Fail Runs/# Pass Runs)
tcas 20 11 (5 / 6)
totinfo 20 22 (10 / 12)
sched 20 29 (10 / 19)
sched2 20 30 (9 / 21)
ptok 2 32 (8 / 24)
ptok2 11 29 (5 / 24)
replace 20 38 (9 / 29)

Table 2. Multiple-fault experimental subjects.

1. Minimal-computation approach (MIN). The original
Value Replacement technique is applied only once to obtain
a single ranked list of program statements, which is then
consulted as necessary until all faults are found.

2. Full-recomputation approach (FULL). The original
Value Replacement technique is iteratively applied to find
each fault, one at a time.

3. Partial-recomputation approach (PARTIAL). Multi-
ple ranked lists of program statements are computed and
iteratively revised through partial recomputation of IVMPs
(from only a subset of failing runs) to find each fault.

4. Ideal situation (IDEAL). We consider the “ideal” situ-
ation for finding each fault to be the case where that fault
exists in isolation in a program (no other faults present).
This situation is most likely to lead to the best fault local-
ization results for each fault, when using Value Replace-
ment. These “ideal” single-fault results are used to compare
against the above 3 techniques that handle multiple faults.

To compare the results of each approach, we assign a
score to each located faulty statement. The score is based
upon the position of that statement within the ranked list of
statements in which it is found. It represents the percentage
of program statements in the ranked list that need not be ex-
amined if statements are examined in rank order. Let f be
a faulty statement, and assume that faulty statement occurs
at rank r in a ranked list containing totalStmts total state-
ments. Then the score of faulty statement f can be defined
as follows.

score(f) =
totalStmts− r
totalStmts

× 100% (1)

The ideal situation occurs when the faulty statement has
rank value 1. A higher score is preferable because it means
that more program statements need not be examined to lo-
cate the fault. In the event that ties occur in the ranked list,
all tied statements are given a rank value equal to the maxi-
mum rank value from among the tied statements. For exam-
ple, if there are 5 statements tied for highest rank, then all 5
of them are given rank 5. This allows us to conservatively
assume that we would have to examine all tied statements
before any faulty statement within that tied set can be found.

Prog. Average Score (%)
Name IDEAL FULL PARTIAL MIN
tcas 83.64 82.87 77.98 68.82
totinfo 64.45 63.14 60.29 52.78
sched 88.56 88.28 85.13 84.72
sched2 64.75 58.15 56.81 56.20
ptok 76.28 70.14 65.55 59.00
ptok2 89.62 84.37 84.13 80.69
replace 88.17 86.98 86.50 76.27

Table 3. Average score achieved for each lo-
cated fault using each approach.

4.2. Results and Discussion

Effectiveness. Table 3 shows the average score values
achieved for each fault from among all individual faults
contained within the multiple-fault versions associated with
each subject program. As shown in the table, the FULL ap-
proach is able to achieve average score values that are very
close to the IDEAL values in most cases (within one or two
percentage points). The exceptions are programs sched2,
ptok, and ptok2, in which the FULL approach achieves
average results that are about 5% – 6% less than the IDEAL
results. We found that for these three programs that contain
relatively few distinct faults (shown in Table 1), there were
a small number of particular faults in which IVMPs could
not be found at the faulty statements, thus resulting in poor
ranking results. Since these “problem” faults were repeat-
edly selected from a relatively small set of total faults, they
were present in relatively many of the multiple-fault faulty
versions for these programs, affecting the average results.

In all cases, the PARTIAL approach is able to achieve
average score values that are within 5% of the FULL ap-
proach. In some cases, the difference is quite small. For ex-
ample, in the replace program, the FULL approach has
an average score of 86.98%, while the PARTIAL approach
yields almost the same average score: 86.50%. For ptok2,
FULL has an average score of 84.37% while PARTIAL has
84.13%. This suggests that PARTIAL may be effective at
approximating the effectiveness of FULL in certain cases.

The MIN approach has the lowest average scores in all
cases. When compared to the PARTIAL approach, the MIN
results are still sometimes considerably lower. For exam-
ple, in program tcas, the MIN approach yields an aver-
age score of 68.82%, which is about 9% less than PAR-
TIAL, 14% less than FULL, and 15% less than IDEAL. For
replace, MIN yields an average score that is about 10%
less than that achieved by PARTIAL.

Table 3 suggests that if effectiveness is the primary
concern when locating multiple faults in software, the
FULL and PARTIAL approaches may be the best choices.
However, the FULL approach may be prohibitively time-
consuming in some cases. In these situations, the PARTIAL
approach may be preferable to achieve better running time.



 0

 100

 200

 300

 400

 500

 600

replaceptok2ptoksched2schedtotinfotcas

Ti
m

e 
(s

ec
on

ds
)

Subject Program

Average Time to Search for IVMPs

IDEAL
FULL

PARTIAL
MIN

Figure 7. Avg. total time to search for IVMPs.

Efficiency. Figure 7 shows the total time (in seconds)
required to search for all IVMPs when running each of the
four fault localization approaches. For each subject pro-
gram, the displayed timing data is the average from among
all faulty versions associated with the program. Each bar
is stacked to show the average time required for each it-
eration of the approach (except MIN, in which IVMPs are
computed in only one iteration).

It can be seen in Figure 7 that the FULL approach re-
quires more time overall than PARTIAL, which requires
more time than MIN. In general, the time required by PAR-
TIAL is slightly closer to the time for FULL as opposed
to the time for MIN. This is not surprising, considering
that only FULL and PARTIAL iteratively compute IVMPs
(though PARTIAL may search fewer total failing runs than
FULL). However, in some cases the overall time required by
PARTIAL is noticeably less than FULL. In ptok, FULL re-
quires about 600 seconds (10 minutes) on average to search
for IVMPs in each faulty version, whereas PARTIAL re-
quires only about 470 seconds (under 8 minutes), a 20%
reduction in running time. For replace, FULL requires
about 5.5 minutes while PARTIAL requires about 3.8 min-
utes, a 30% reduction in running time. Since the effective-
ness of PARTIAL is similar to that of FULL (especially for
ptok2 and replace), then PARTIAL may be useful in
situations where running time is an issue. Note also that the
timing results for IDEAL are generally less than for FULL
and PARTIAL; this is due to the programs being single-fault
versions in IDEAL, with relatively fewer failing runs expos-
ing these faults that need to be searched for IVMPs.

Table 4 shows the actual number of failing runs that are
searched for IVMPs in each iteration, on average for each
faulty version in a subject program. For example, for the
FULL approach in program replace, the first iteration
required a search for IVMPs in an average of 9 failing runs,
the second iteration required a search in an average of 7
failing runs, and so forth, such that an average of 26 runs
needed to be searched in total. We leave out the column for

Prog. Average Number of Runs to Search for IVMPs
Name IDEAL FULL PARTIAL
tcas 1+1+2+2+2=8 5+4+3+2+1=15 5+4+3+2+1=15
totinfo 3+4+4+3+3=17 10+5+4+3+2=24 10+3+3+2+1=19
sched 2+3+3+2+2=12 10+4+3+2+1=20 10+3+2+1+1=17
sched2 5+5+3+4+6=23 9+4+3+2+1=19 9+3+2+2+1=17
ptok 4+1+1+1+1=8 8+7+6+5+4=30 8+2+3+5+4=22
ptok2 1+1+2+1+1=6 5+4+3+1+1=14 5+2+2+1+1=11
replace 2+2+3+2+2=11 9+7+5+4+1=26 9+3+3+2+1=18

Table 4. Average number of runs searched for
IVMPs (separated by iteration number).

approach MIN because the results are identical to the results
of the first iteration for approaches FULL and PARTIAL.

The results in this table mirror the timing results from
Figure 7; PARTIAL requires IVMP searches in fewer to-
tal runs than FULL. MIN requires IVMP searches in the
fewest number of runs. An interesting observation to make
from this table is that as the iteration number increases for
both the FULL and PARTIAL approaches, the total number
of failing runs that must be searched for IVMPs tends to de-
crease. This is because as faults are iteratively found and
fixed over time, fewer failing runs will tend to remain.

Other points of discussion. The programs used in our
experiments, and their associated faults and test cases, were
obtained from other researchers [8] and may not be repre-
sentative of programs and faults that typically occur in prac-
tice. In the future, we hope to conduct further empirical
evaluation of the effectiveness and efficiency of our tech-
nique when applied to larger, more realistic programs.

Despite our improvements regarding the efficiency of
Value Replacement, the ability of our approach to scale to
larger programs and execution traces remains an important
issue: when searching for IVMPs, our approach still con-
siders multiple value replacements in multiple statement in-
stances in multiple runs. We observe that the improvements
described in the current work (Section 3) are lossless, in the
sense that no IVMPs will be missed by applying these im-
provements. However, there are other lossy techniques [9]
not considered in this work, that we believe have poten-
tial to considerably improve efficiency without significantly
degrading the quality of the fault localization results (due
to a small number of missed IVMPs). This includes tech-
niques to limit the number of statement instances to search
for IVMPs (e.g., consider only those statement instances in
the dynamic slice of the incorrect output values), and tech-
niques to limit the number of alternate value sets to consider
for value replacements (e.g., consider a subset of alternate
values that still span the range of alternate values). We be-
lieve that there is still much opportunity to dramatically im-
prove the scalability of Value Replacement in the future.

4.3. Comparison to Clustering

In the paper “Debugging in Parallel” [12], Jones et. al.
describe a framework for parallel debugging in the presence
of multiple faults. In this work, failing runs are clustered ac-
cording to one of two proposed clustering techniques, and



Prog. Average Score (%)
Name T=0.1 T=0.3 T=0.5 T=0.7 T=0.9
tcas 69.43 69.97 67.82 67.68 59.59
totinfo 54.23 56.37 56.89 56.84 54.66
sched 91.29 91.97 88.96 88.54 88.45
sched2 55.39 55.32 53.79 47.28 42.30
ptok 57.25 57.25 58.38 60.50 59.50
ptok2 80.78 80.64 80.91 78.94 78.13
replace 77.85 77.62 76.26 66.68 63.26

Table 5. Average score value achieved for
each located fault using clustering (for differ-
ent threshold values T).

then used to create specialized test suites that are targeted
to a single fault. To study the effect of clustering, we im-
plemented one of their proposed techniques (“Technique
2” in [12], selected based on ease of implementation). In
this clustering technique, each individual failing test case in
an available test suite is used to compute a suspiciousness
ranking. These suspiciousness rankings are then checked
against each other for similarity using a metric called Jac-
card Set Similarity, which is defined as the ratio of the sizes
of the intersection and the union between two sets. The
failing runs associated with the suspiciousness rankings that
are considered “similar” to each other are then clustered to-
gether. Each cluster of failing runs is then used to compute
a ranked list of program statements that targets a particular
fault. To determine whether two suspiciousness rankings
are “similar” or not, a threshold value between 0 and 1 is
set such that a set-similarity value greater than or equal to
that threshold is considered to be “similar”.

The above clustering technique is general and can be
used with any fault localization approach that computes
a suspiciousness ranking. We conducted an experiment
where we performed the above clustering technique in con-
junction with the Value Replacement technique for comput-
ing suspiciousness rankings. The computed clusters were
then used to compute ranked lists of program statements
that could be used to locate faults. Table 5 shows these re-
sults, on average for each subject program. The table shows
the results for different similarity threshold values T, which
guide how the clusters are formed and can therefore have a
significant impact on the overall fault localization results.

From this table, it can be seen that the average score
values are generally significantly lower for the clustering
technique than for the FULL and PARTIAL approaches as
shown previously in Table 3. One exception is for program
sched, in which the clustering technique is able to achieve
slightly higher average score values for the lower threshold
values T. Overall, however, these results suggest that the
approaches described in the current work, which are aimed
specifically at improving the efficiency and effectiveness of
Value Replacement in the context of multiple faults, may be
preferable to the more general clustering technique when

applied in conjunction with Value Replacement. However,
the benefit of clustering is that it allows for debugging of
multiple faults in parallel, whereas the techniques proposed
in the current work are iterative in nature, meant to isolate
only one fault at a time.

5. Related Work

The problem of fault localization has been extensively
studied, but most techniques are not explicitly designed to
address the issue of multiple faults in software. Slicing-
based approaches compute subsets of program statements
that directly or indirectly influence the value of a variable
at some point in a program. Static Slicing [22] identi-
fies a conservative subset of program statements that may
cause such an influence, based upon the program source
code. Dynamic Slicing was proposed [2, 15, 21] to iden-
tify a more precise subset of statements in the context of an
execution of the program. Recent work on Dynamic Slic-
ing [5, 26, 27, 28] has improved its efficiency and efficacy
for debugging. To take potential influences into account, the
related concept of Relevant Slicing [3, 6] has been studied.

Statistical approaches for fault localization [14, 16, 17]
use dynamic information obtained from test case executions
to rank program statements according to likelihood of be-
ing faulty. Jiang and Su [11] proposed a context-aware ap-
proach that constructs faulty control flow paths linking bug
predictors together, to better describe where and how bugs
occur. The Nearest Neighbor approach [20] searches for a
correct execution that is most similar to an incorrect exe-
cution, compares the spectra for these two executions, and
identifies the most suspicious parts of a program.

State-altering approaches modify the state of an execut-
ing program to isolate bugs. In Delta Debugging, failure-
inducing input is identified [24] that allows for the com-
putation of cause-effect chains for failures [23] that can be
linked to faulty code [4]. This is accomplished by swap-
ping the values of variables between a successful and fail-
ing run. Misherghi and Su [18] proposed an improved Delta
Debugging algorithm for minimizing failure-inducing in-
puts. Predicate Switching [25] attempts to isolate erroneous
code by identifying predicates whose outcomes can be al-
tered during a failing run to cause it to become passing.
Execution Suppression [10] is a technique that iteratively
isolates memory corruption during a failing execution to
identify the root cause of a memory-related failure. Value
Replacement [9], discussed extensively in the current work,
is also a state-altering technique.

A few techniques have been proposed for handling multi-
ple faults. Abreu et. al. [1] describe a dynamic model-based
approach that can derive explanations for multiple potential
faults in software. Jones et. al. [12] describe a framework
for parallel debugging (discussed in Section 4.3). Their
work enables the use of parallel work flows to debug dif-



ferent faults simultaneously, thereby reducing the time-to-
release of a program. Our current work differs in that it
allows for iterative debugging and simply seeks to achieve
the best localization results for each fault.

6. Conclusions
In this paper, we presented a generalized version of our

Value Replacement technique for fault localization [9] that
has been extended to perform effectively in the presence
of multiple faults in software. The overall approach is to
iteratively compute a ranked list of program statements
such that each ranked list can guide a developer to some
fault in the program as quickly as possible. We presented
three variants of this approach that have different effec-
tiveness and efficiency tradeoffs. We have also described
two techniques that significantly decrease the computation
time required by Value Replacement. These efficiency
improvements enhance the applicability and usefulness of
our generalized Value Replacement technique that handles
multiple faults. In our experimental study, the total time
required to locate the multiple faults in our benchmark
programs was on the order of minutes in the worst case,
among all faulty versions. This is a considerable improve-
ment over our previous study [9] in which it took hours in
the worst cases to isolate only single faults.

Acknowledgements. We would like to thank the anony-
mous reviewers for their valuable feedback. This research
is supported by NSF grants CNS-0751961, CNS-0751949,
CNS-0810906, and CCF-0753470 to UC Riverside.

References

[1] R. Abreu, P. Zoeteweij, and A. J. C. van Gemund. A dy-
namic modeling approach to software multiple-fault local-
ization. Proc. of the 19th International Workshop on Princi-
ples of Diagnosis, pages 7–14, September 2008.

[2] H. Agrawal and J. R. Horgan. Dynamic program slicing.
Proc. of the ACM SIGPLAN ’90 Conf. on Programming Lan-
guage Design and Impl., pages 246–256, June 1990.

[3] H. Agrawal, J. R. Horgan, E. W. Krauser, and S. London.
Incremental regression testing. IEEE International Conf. on
Software Maintenance, pages 348–357, September 1993.

[4] H. Cleve and A. Zeller. Locating causes of program failures.
27th Intl. Conf. on Soft. Eng., pages 342–351, May 2005.

[5] N. Gupta, H. He, X. Zhang, and R. Gupta. Locating faulty
code using failure-inducing chops. Intl. Conf. on Automated
Software Engineering, pages 263–272, November 2005.

[6] T. Gyimothy, A. Beszedes, and I. Forgacs. An efficient rele-
vant slicing method for debugging. Foundations of Software
Engineering, pages 303–321, September 1999.

[7] http://valgrind.org.
[8] M. Hutchins, H. Foster, T. Goradia, and T. Ostrand. Ex-

periments on the effectiveness of dataflow and controlflow-
based test adequacy criteria. Proc. of the 16th International
Conf. on Software Engineering, pages 191–200, May 1994.

[9] D. Jeffrey, N. Gupta, and R. Gupta. Fault localization using
value replacement. International Symposium on Software
Testing and Analysis, pages 167–178, July 2008.

[10] D. Jeffrey, N. Gupta, and R. Gupta. Identifying the root
causes of memory bugs using corrupted memory location
suppression. Intl. Conf. on Software Maintenance, pages
356–365, September 2008.

[11] L. Jiang and Z. Su. Context-aware statistical debugging:
From bug predictors to faulty control flow paths. Intl. Conf.
on Automated Soft. Eng., pages 184–193, November 2007.

[12] J. A. Jones, J. F. Bowring, and M. J. Harrold. Debugging in
parallel. International Symposium on Software Testing and
Analysis, pages 16–26, July 2007.

[13] J. A. Jones and M. J. Harrold. Empirical evaluation of the
tarantula automatic fault-localization technique. Intl. Conf.
on Automated Soft. Eng., pages 273–282, November 2005.

[14] J. A. Jones, M. J. Harrold, and J. Stasko. Visualization of test
information to assist fault localization. International Conf.
on Software Engineering, pages 467–477, May 2002.

[15] B. Korel and J. Laski. Dynamic program slicing. Informa-
tion Processing Letters, 29(3):155–163, October 1988.

[16] B. Liblit, M. Naik, A. Zheng, A. Aiken, and M. Jordan. Scal-
able statistical bug isolation. Conf. on Programming Lan-
guage Design and Impl., pages 15–26, June 2005.

[17] C. Liu, X. Yan, L. Fei, J. Han, and S. Midkiff. SOBER: Sta-
tistical model-based bug localization. 10th European Soft-
ware Engineering Conf. held jointly with 13th Intl. Symp. on
Foundations of Soft. Eng., pages 286–295, September 2005.

[18] G. Misherghi and Z. Su. HDD: Hierarchical delta debug-
ging. Proc. of the 28th International Conference on Software
Engineering, pages 142–151, May 2006.

[19] N. Nethercote and J. Seward. Valgrind: A framework for
heavyweight dynamic binary instrumentation. Conf. on
Prog. Lang. Design and Impl., pages 89–100, June 2007.

[20] M. Renieris and S. Reiss. Fault localization with nearest
neighbor queries. Intl. Conf. on Automated Software Engi-
neering, pages 30–39, October 2003.

[21] F. Tip. A survey of program slicing techniques. Journal of
Programming Languages, 3(3):121–189, September 1995.

[22] M. Weiser. Program slicing. IEEE Transactions on Software
Engineering, 10(4):352–357, July 1984.

[23] A. Zeller. Isolating cause-effect chains from computer pro-
grams. 10th International Symposium on the Foundations of
Software Engineering, pages 1–10, November 2002.

[24] A. Zeller and R. Hildebrandt. Simplifying and isolating
failure-inducing input. IEEE Transactions on Software En-
gineering, 28(2):183–200, February 2002.

[25] X. Zhang, N. Gupta, and R. Gupta. Locating faults through
automated predicate switching. Intl. Conf. on Software En-
gineering, pages 272–281, May 2006.

[26] X. Zhang, N. Gupta, and R. Gupta. Pruning dynamic slices
with confidence. Conf. on Programming Language Design
and Impl., pages 169–180, June 2006.

[27] X. Zhang and R. Gupta. Cost effective dynamic program
slicing. Conf. on Programming Language Design and Im-
plementation, pages 94–106, June 2004.

[28] X. Zhang, R. Gupta, and Y. Zhang. Precise dynamic slicing
algorithms. IEEE/ACM International Conference on Soft-
ware Engineering, pages 319–329, May 2003.


